標題:
100建中科學班
[打印本頁]
作者:
son249
時間:
2016-3-1 08:55
標題:
100建中科學班
計算證明題2.
設\(a,b,c\)為實數,其中\(a \ne 0\),令函數\( f(x)=ax^2+bx+c \),\(g(x)=ax+b\),已知當\(-1 \le x \le 1\)時,\( |\; f(x) |\; \le 5\), 試證:
(1)當\(-1 \le x \le 1\)時,\( |\; g(x) |\; \le 10 \)。
(2)若已知當\(-1 \le x \le 1\)時,\( g(x) \)的最大值為10,則\( f(x)=\)?
原題目沒給解答!
附件:
100建國中學科學班.pdf
(2016-5-2 11:02, 230.04 KB) / 該附件被下載次數 5830
https://math.pro/db/attachment.php?aid=3322&k=b3a4481647f20e72e4693129068b126e&t=1732302489
作者:
thepiano
時間:
2016-3-1 11:17
標題:
回復 1# son249 的帖子
(1)
\(\begin{align}
& \left| f\left( -1 \right) \right|=\left| a-b+c \right|\le 5 \\
& \left| f\left( 0 \right) \right|=\left| c \right|\le 5 \\
& \left| f\left( 1 \right) \right|=\left| a+b+c \right|\le 5 \\
& \\
& \left| g\left( 1 \right) \right|=\left| a+b \right|=\left| a+b+c-c \right|\le \left| a+b+c \right|+\left| c \right|\le10 \\
& \left| g\left( -1 \right) \right|=\left| -a+b \right|=\left| a-b \right|=\left| a-b+c-c \right|\le \left| a-b+c \right|+\left| c \right|\le10 \\
& -1\le x\le 1,\left| g\left( x \right) \right|\le 10 \\
\end{align}\)
(2)先考慮\(a>0\)
\(g\left( x \right)\)在\(\left[ -1,1 \right]\)的最大值是\(g\left( 1 \right)=a+b=10\)
\(\begin{align}
& -5\le c=f\left( 0 \right)=f\left( 1 \right)-\left( a+b \right)\le 5-10=-5 \\
& c=-5 \\
\end{align}\)
由於\(-1\le x\le 1,f\left( x \right)\ge -5=f\left( 0 \right)\),\(y\)軸是拋物線的對稱軸
\(\begin{align}
& b=0,a=10 \\
& f\left( x \right)=10{{x}^{2}}-5 \\
\end{align}\)
\(a<0\)時,就不寫了,答案是\(f\left( x \right)=-10{{x}^{2}}+5\)
[
本帖最後由 thepiano 於 2016-3-1 11:19 AM 編輯
]
作者:
son249
時間:
2016-3-2 07:58
感謝鋼琴老師,非常詳盡!
歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/)
論壇程式使用 Discuz! 6.1.0