Claim1: \( a_{k2^{n+1}}=a_{k2^{n}}^{+} \), for any \( k\in\mathbb{N} , n\in\mathbb{N}_{0} \)
(其實就是 \( a_{2n}=a_{n}^{+} \),為了方便使用數學歸納證明,所以先改寫形式)
Proof of claim1: For \( k=1 \), 由 \( a_{1}=1, a_{2}=2 \) 及 \( a_{4n}=a_{2n}+a_{n} \) 可得 \( a_{2^{n+1}}=a_{2^{n}}^{+} \)。
Suppose that \( a_{k2^{n+1}}=a_{k2^{n}}^{+} \) for all \( n\in\mathbb{N}_{0} \) is true for any \( k\leq m \) (m is some positive integer).
When \( k=m+1 \) : If k is even, then \( a_{k2^{n+1}}=a_{\frac{k}{2}2^{n+2}}=a_{\frac{k}{2}2^{n+1}}^{+}=a_{k2^{n}}^{+} \).
Therefore, \( a_{k2^{n+1}}=a_{k2^{n}}^{+} \) is also true for this k.
If k is odd, then \( k=2k'+1 \), for some \( k'\in\mathbb{N} \) and \( k'\leq m \).
\( a_{2k}=a_{4k'+2}=a_{4k'+1}+1=a_{8k'}+2 \)
\( a_{k}=a_{2k'+1}=a_{4k'}+1=a_{k'}^{++}+1 \) by induction hypothesis
\( a_{k}^{+}=a_{k'}^{+++}+1^{+}=a_{8k'}+2=a_{2k} \). by induction hypothesis.
∵ \( a_{4n}=a_{2n}+a_{n} \) and \( a_{2k}=a_{k}^{+} \) ∴ \(a_{k2^{n+1}}=a_{k2^{n}}^{+} \) for all \(n\in\mathbb{N}_{0} \)
By mathematical induction, we get \( a_{k2^{n+1}}=a_{k2^{n}}^{+} \), for any \( k\in\mathbb{N} \), \( n\in\mathbb{N}_{0} \)
Proof of claim2
Claim1 \( \Rightarrow a_{2n}=a_{n}^{+} \).
\( a_{2n+1}=a_{4n}+1 =a_{2n}^{+}+1 \) by (2) and claim 1. □
For any \( I\subset\mathbb{N} \), define \( I'=\{n+1\mid n\in I\,\wedge\, n\mbox{ is even}\}, 2I=\{2n\mid n\in I\}, A_{I}=\{a_{n}\mid n\in I\} \).
Let \( I_{1}=\{1\}, I_{k+1}=(2I_{k})\cup I_{k}' \), for \( k\in\mathbb{N} \). (其實是 disjoint uion)