計算證明二
設\( a,b \)為正整數且\( \displaystyle \frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots+\frac{1}{39}-\frac{1}{40}=\frac{b}{a}. \)若有一質數\( P \)可整除\( b \),則\( P \)可以為何(寫出一個即可)?並證明之。
If \( p \) and \( q \) are natural numbers so that:\( \displaystyle \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots-\frac{1}{1318}+\frac{1}{1319} \),Prove that \( p \) is divisible by 1979.
(1979IMO,http://artofproblemsolving.com/community/c3806_1979_imo)
當初IMO題目也沒有分子分母要互質的條件 作者: jackyxul4 時間: 2015-5-20 20:12