原帖由 bugmens 於 2014-6-7 06:11 PM 發表
1.
若z為複數,且滿足\( \displaystyle z+\frac{1}{z}=1 \),則\( \displaystyle z^{103}+\frac{1}{z^{103}}= \) 。
[公式]
若\( \displaystyle z+\frac{1}{z}=2 cos \theta \),則\( \displaystyle z^n+\frac{1}{z^n}= ...
原帖由 hua0127 於 2014-6-7 09:52 PM 發表
恩....那算一邊
\(\cos B=-\cos D\Rightarrow {{m}^{2}}=\frac{\left( ac+bd \right)\left( ad+bc \right)}{ab+cd}\)
在利用 mn=ac+bd
在相除這樣算嗎?會不會太無賴XD
原帖由 wrty2451 於 2014-6-8 10:36 AM 發表
計算1. 試求滿足103x+17y=2014的所有正整數解及一般整數解。
17y=2014-103x
17y=118*17+8-6*17x-x
y=118-6x +1/17(8-x)
Let x=8+17t
y=118-6(8+17t)-t=70-103t
當t=0時 x,y為正整數解
小弟的數論和微分方程算是很弱的 ...
原帖由 bugmens 於 2014-6-7 06:11 PM 發表
1.
若z為複數,且滿足\( \displaystyle z+\frac{1}{z}=1 \),則\( \displaystyle z^{103}+\frac{1}{z^{103}}= \) 。
[公式]
若\( \displaystyle z+\frac{1}{z}=2 cos \theta \),則\( \displaystyle z^n+\frac{1}{z^n}= ...
歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) | 論壇程式使用 Discuz! 6.1.0 |