Board logo

標題: 請教一題數論問題 [打印本頁]

作者: fuzzydog    時間: 2014-5-22 09:16     標題: 請教一題數論問題

已知正整數\(n\)可以寫成兩個整數的平方和,試問\(n\)除以8的餘數不可能為
(A)1 (B)2 (C)4 (D)5 (E)6。

我在高中數學101看到的題目,我看不懂它的解釋,一開始的令法有何用意,這類的問題感覺很瑣碎,老師們有沒有推薦相關延伸閱讀,麻煩了謝謝!

圖片附件: 2152.jpg (2014-5-22 09:16, 39.85 KB) / 該附件被下載次數 4555
https://math.pro/db/attachment.php?aid=2270&k=15c07899f6e5d0688e73cef505f40382&t=1732251766


作者: thepiano    時間: 2014-5-22 10:51

一個正整數除以 4,餘數只可能是 0 或 1 或 2 或 3
餘數是 0,就寫成 4Q
餘數是 1,就寫成 4Q + 1
餘數是 2,就寫成 4Q + 2
餘數是 3,就寫成 4Q + 3 或 4Q - 1

可以看看"同餘"理論
作者: fuzzydog    時間: 2014-5-22 15:43     標題: 回復 2# thepiano 的帖子

1.我要如何知道一開始要令4的倍數。
2.\( n=a^2+b^2 \) 是把 m任兩各種組合(可重複選)相加求出餘數嗎?
作者: thepiano    時間: 2014-5-22 16:39

1. 用 4 是因為
\({{\left( 4q+s \right)}^{2}}=16{{q}^{2}}+8qs+{{s}^{2}}\)
\(16{{q}^{2}}+8qs\)是 8 的倍數,所以只要看\({{s}^{2}}\)除以 8 的餘數即可

2. 對,把 \({{m}^{2}}\) 除以 8 的餘數,任兩者(可重複選)相加
作者: fuzzydog    時間: 2014-5-22 20:06     標題: 回復 4# thepiano 的帖子

謝謝thepiano幫我解惑。




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0