修改的部分 | 原本的LLL | integral LLL |
Gram–Schmidt正交化 | for(i從1到m) {for(j從1到i) {\( \displaystyle \mu_{ij}=\frac{v_i \cdot v_j^*}{v_j \cdot v_j} \) \( \displaystyle v_i=v_i-\sum_{j=1}^{i-1}\mu_{ij}\cdot v_j^* \) } } | \( d_0=1 \) //分母初始值是1 for(i從1到m) {for(j從1到i-1) {\( \mu_{ij}=v_i \cdot v_j^* \) //沒有除\( v_j \cdot v_j \)了 \( \displaystyle v_{i}^*=\frac{d_j \cdot v_i^*-\mu_{ij}\cdot v_j^*}{d_{j-1}} \) } \( \mu_{ii}=v_{i}\cdot v_i^* \) \( \displaystyle d_{i}=\frac{v_i^* \cdot v_i^*}{d_{i-1}} \) //計算下一個分母 } |
Size condition | \( \displaystyle |\; u_{ij} |\; \le \frac{1}{2} \) \( 1 \le j<i \le n \) | \( \displaystyle \Bigg\vert\; \frac{u_{ij}}{d_j} \Bigg\vert\; \le \frac{1}{2} \) \( 1 \le j<i \le n \) |
Lovász condition | \( \displaystyle \Vert\; v_i^* \Vert\;^2 \ge (\frac{3}{4}-\mu_{i,i-1}^2)\Vert\; v_{i-1}^* \Vert\;^2 \) \( 1<i \le n \) | \( 4d_{i-2}\cdot d_{i} \ge 3d_{i-1}^2-4u_{i,i-1}^2 \) \( 1<i \le n \) |
\( b_1 \) | \( b_2 \) | \( b_3 \) | Place |
\( (4,-1) \) | \( (5,4) \) | \( (-2,-4) \) | |
\( (4,-1) \) | \( (1,5) \) | \( (-2,-4) \) | 2 |
\( (4,-1) \) | \( (1,5) \) | \( (-1,1) \) | 2 |
\( (4,-1) \) | \( (-1,1) \) | \( (1,5) \) | 5 |
\( (-1,1) \) | \( (4,-1) \) | \( (1,5) \) | 5 |
\( (-1,1) \) | \( (1,2) \) | \( (1,5) \) | 2 |
\( (-1,1) \) | \( (1,2) \) | \( (-1,1) \) | 2 |
\( (-1,1) \) | \( (-1,1) \) | \( (1,2) \) | 5 |
\( (-1,1) \) | \( (0,0) \) | \( (1,2) \) | 2 |
\( (-1,1) \) | \( (1,2) \) | \( (0,0) \) | 4 |
原本的Gauss/Lagrange方法 | 本論文的Gauss/Lagrange方法 |
1 \( do\{\; \) 2 \(if(v_1的長度>v_2的長度)\) 3 \( \{\; v_1和v_2兩個向量交換 \}\; \) 4 \(t=\lfloor\; v_1.v_2/v_1.v_1 \rceil\; \) 5 \(if(t!=0)\) 6 \(\{\; v_2=v_2−tv_1; \}\;\) 7 \(\}\;\) 8 \(while(t!=0);\) | 1 \(G=V^TV\) 2 \(U=I_2\) 3 \( if \) \(G(1,1)<G(2,2)\) 4 \( swap \) \(G(:,1)\) \(and\) \(G(:,2)\) 5 \( swap \) \(G(1,: )\) \(and\) \(G(2,: )\) 6 \( swap \) \(Z(:,1)\) \(and\) \(G(:,2)\) 7 \(end\) 8 9 \(while\) \(G(1,1)>G(2,2)\) 10 \(q=\lfloor\; G(1,2)/G(2,2) \rceil\;\) 11 \(G(:,2)=G(:,2)-q \times G(:,1)\) 12 \(G(2,: )=G(2,: )-q \times G(1,: )\) 13 \(U(:,2)=U(:,2)-q \times U(:,1)\) 14 \(end\) 15 16 \(return\) \(U\) |
Jacobi方法以列計算 | Jacobi方法以行計算 |
1 \(G=VV^T\) 2 \(U=I_n\) 3 4 \(while\) \(not\) \(all\) \(pairs\) \((v_i,v_j)\) \(satisfy\) \( \Vert\; v_i \Vert\; \le \Vert\; v_j \Vert\; \) and \( \displaystyle |\; v_i v_j |\; \le \frac{\Vert\; v_i \Vert\;^2}{2} \) 5 \(for\) \(i=1\) \(to\) \(n-1\) 6 \(for\) \(j=i+1\) \(to\) \(n\) 7 \(q=G(i,j)/G(i,i)\) 8 \(if\) \(|\; q |\;>1/2\) 9 \(G(:,j)=G(:,j)-\lfloor\; q \rceil\; \times G(:,i)\) 10 \(G(j,: )=G(j,: )-\lfloor\; q \rceil\; \times G(i,: )\) 11 \(U(j,: )=U(j,: )-\lfloor\; q \rceil\; \times U(i,: )\) 12 \(end\) 13 \(if\) \(G(i,i)>G(j,j)\) 14 \(swap\) \(G(:,i)\) \(and\) \(G(:,j)\) 15 \(swap\) \(G(i,: )\) \(and\) \(G(j,: )\) 16 \(swap\) \(U(i,: )\) \(and\) \(U(j,: )\) 17 \(end\) 18 \(end\) 19 \(end\) 20 \(end\) 21 22 \(return\) \(UV\) | 1 \(G=V^TV\) 2 \(U=I_n\) 3 4 \(while\) \(not\) \(all\) \(pairs\) \((v_i,v_j)\) \(satisfy\) \( \Vert\; v_i \Vert\; \le \Vert\; v_j \Vert\; \) and \( \displaystyle |\; v_i v_j |\; \le \frac{\Vert\; v_i \Vert\;^2}{2} \) 5 \(for\) \(i=1\) \(to\) \(n-1\) 6 \(for\) \(j=i+1\) \(to\) \(n\) 7 \(q=G(i,j)/G(i,i)\) 8 \(if\) \(|\; q |\;>1/2\) 9 \(G(:,j)=G(:,j)-\lfloor\; q \rceil\; \times G(:,i)\) 10 \(G(j,: )=G(j,: )-\lfloor\; q \rceil\; \times G(i,: )\) 11 \(U(:,j)=U(:,j)-\lfloor\; q \rceil\; \times U(:,i)\) 12 \(end\) 13 \(if\) \(G(i,i)>G(j,j)\) 14 \(swap\) \(G(:,i)\) \(and\) \(G(:,j)\) 15 \(swap\) \(G(i,: )\) \(and\) \(G(j,: )\) 16 \(swap\) \(U(:,i)\) \(and\) \(U(:,j)\) 17 \(end\) 18 \(end\) 19 \(end\) 20 \(end\) 21 22 \(return\) \(VU\) |
歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) | 論壇程式使用 Discuz! 6.1.0 |