Board logo

標題: 捷徑問題 [打印本頁]

作者: P78961118    時間: 2014-3-31 15:37     標題: 捷徑問題

請問第(4)和(5)選項  謝謝

答案 (4)錯  (5)對


圖片附件: 12.jpg (2014-3-31 15:37, 47.54 KB) / 該附件被下載次數 5670
https://math.pro/db/attachment.php?aid=2068&k=ce2ad78d4af81365bf95926cdf8a7333&t=1732522086


作者: weiye    時間: 2014-3-31 20:47     標題: 回復 1# P78961118 的帖子

選項 1:最短路徑的走法,必取道兩條左下到右上斜直線其中之一,

    所有走法=\(\displaystyle \frac{4!}{2!2!}\cdot\frac{5!}{4!1!}+\frac{4!}{3!1!}\cdot\frac{5!}{3!2!}=70\)

選項 2:經過C的走法=\(\displaystyle 1\cdot\frac{5!}{4!1!}+2\cdot\frac{5!}{3!2!}=25\) 種。

選項 3:經過D的走法=\(\displaystyle \left(\frac{4!}{2!2!}\cdot1+\frac{4!}{3!1!}\cdot2\right)\cdot\frac{3!}{2!1!}=42\) 種。

選項 4:最短路徑的走法,必取道兩條左下到右上斜直線其中之一,

    所以在所有最短路徑的走法中,通過 E 點的有0種。

選項 5:最短路徑的走法中,經過C或E的走法=經過C的走法=\(25\) 種。




Oops...... 我的答案只有選項 3 。怪哉,是我哪裡疏忽、漏掉了嗎?




順便補兩個網路上找到的題目出處好了。

出處:高師大附中101學年度 第二學期 第二次段考 高一 數學科 試題

http://sites.tea.nknush.kh.edu.t ... i-1/gao-yi-shi-ti-1

http://www.lintingmath.url.tw/subject/A101K040122.pdf




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0