﻿ Math Pro 數學補給站

[0  y]   x不等於y , 求A^n

[0  y]      [0    0]

（思考： $$\left(x+y\right)^2=\left(x+y\right)\cdot\left(x+y\right)= x \cdot x+ \underline{x \cdot y} + \underline{y \cdot x} + y \cdot y = x \cdot x+ \underline{x \cdot y} + \underline{x \cdot y} + y \cdot y =x^2+\underline{2xy}+y^2$$ ）

$$\left[\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}0 & x \\ 0 & 0\end{array}\right]$$

$$\left[\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right]=\left[\begin{array}{cc}0 & y \\ 0 & 0\end{array}\right]$$

$$\Rightarrow \left[\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right]\neq\left[\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right]$$

（$$\left[\begin{array}{cc}x & 1 \\ 0 & y\end{array}\right]^2=\left[\begin{array}{cc}x^2 & x+y \\ 0 & y^2\end{array}\right]$$

$$\left[\begin{array}{cc}x & 1 \\ 0 & y\end{array}\right]^3=\left[\begin{array}{cc}x^3 & x^2+xy+y^2 \\ 0 & y^3\end{array}\right]$$

$$\left[\begin{array}{cc}x & 1 \\ 0 & y\end{array}\right]^4=\left[\begin{array}{cc}x^4 & x^3+x^2y+xy^2+y^3 \\ 0 & y^4\end{array}\right]$$）

 歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0