Board logo

標題: 102金門高中 [打印本頁]

作者: bugmens    時間: 2013-6-26 19:20     標題: 102金門高中

9.求\( \displaystyle \sum_{k=1}^{n}{k^4}= \)?
這題剛好也是金門高中的科展作品,所用的符號和題目相同

尋尋「冪」「冪」–連續整數冪次和公式解之簡潔表示法 國立金門高級中學
http://activity.ntsec.gov.tw/activity/race-1/51/senior04.htm

102.6.30補充
1.
word檔的
S:\( (x-3)^2+(y-3)^2+(z-4)^2=1 \)應為
S:\( (x-2)^2+(y-3)^2+(z-4)^2=1 \)
http://www.shiner.idv.tw/teacher ... 53&p=9437#p9436
在此更正

附件: 102金門高中.zip (2013-8-10 08:39, 161.51 KB) / 該附件被下載次數 8994
https://math.pro/db/attachment.php?aid=1835&k=ca484ecbad3aca8a077c53059ab7e24e&t=1732279361
作者: poemghost    時間: 2013-6-27 22:46

word檔是學長重新打字的?
作者: ilikemath    時間: 2013-7-7 10:42

想請教Q1,5,6
謝謝
作者: thepiano    時間: 2013-7-7 11:37

第 1 題
令平面 α 的方程式為 x = ay
相交圓半徑 1/√2,球半徑 1
利用球心 (2,3,4) 到平面 α 的距離 = 1/√2 可求出 a

第 5 題
c/(b + c) = 7^2/(7 + 3)^2
(b + c)/(a + b + c) = (7 + 3)^2/(2 + 7 + 3)^2
......

第 6 題
A_n 的橫坐標 = 2 + 5 + 8 + ... + (3n - 1) - (3n - 1)/2 = (3n^2 - 2n + 1)/2
A_n 的縱坐標 = (√3/2)(3n - 1)
......

[ 本帖最後由 thepiano 於 2013-7-7 11:53 AM 編輯 ]




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0