Board logo

標題: 101基隆女中(代理) [打印本頁]

作者: 八神庵    時間: 2012-7-5 19:39     標題: 101基隆女中(代理)

如附件
請各位享用

101.7.5補充
將題目重新打字,方便以後搜尋題目

附件: 101基隆女中(代理).zip (2012-7-6 00:23, 388.32 KB) / 該附件被下載次數 8853
https://math.pro/db/attachment.php?aid=1343&k=7a08eb3e2088c527085a2fab58b4e08a&t=1732313811
作者: chiang    時間: 2012-7-7 10:25     標題: 問題請教

可以請問第1,5,6,8題怎算?
謝謝。

[ 本帖最後由 chiang 於 2012-7-7 11:36 AM 編輯 ]
作者: andyhsiao    時間: 2012-7-7 12:18

第一題
\(A,C\)在以\(O\)為圓心,半徑為\( \sqrt{50} \)的圓周上,若\(∠ABC=90^{\circ}\),\(\overline{AB}=6\),\( \overline{BC}=2 \),則\( \overline{OB}= \)   

參考看看


圖片附件: 1.jpg (2012-7-7 12:18, 65.15 KB) / 該附件被下載次數 7985
https://math.pro/db/attachment.php?aid=1357&k=da16594db6a88147ef41e32d65fb84c7&t=1732313811


作者: andyhsiao    時間: 2012-7-7 13:13

第5題
在坐標平面上,已知直角三角形\(OPQ\)中,\(∠OQP\)為直角,\( O(0,0),P(2,-3) \),且\( \overline{OP}:\overline{OQ}=2:1 \),則\(Q \)點坐標為   

我用複數來做...圖可能不太準^^...參考看看
把60度改成負60度即可求另外一點



圖片附件: 3.jpg (2012-7-7 13:13, 49.64 KB) / 該附件被下載次數 7842
https://math.pro/db/attachment.php?aid=1358&k=e302205f16cd4a089855235c2ce375a5&t=1732313811


作者: chiang    時間: 2012-7-7 13:54     標題: 回復 3# andyhsiao 的帖子

Thanks.
I got it.
作者: chiang    時間: 2012-7-7 13:57     標題: 回復 4# andyhsiao 的帖子

了不起!
沒想到還有這一招!
給樓上兩位按個讚!
作者: andyhsiao    時間: 2012-7-7 16:02

第八題
給定一個邊長為2的正八面體,某個平面與此正八面體一雙平行表面平行,且將此正八面體分成兩個全等的立體。設這個平面截此正八面體所形成多邊形的截面面積為\( \displaystyle \frac{a\sqrt{b}}{c} \),其中\(a,b,c\)均為正整數,\(a\)與\(c\)互質,\(b\)不能被任何質數的平方整除,則\(a+b+c=\)   

截面剛好是一個邊長為1正六邊形
作者: andyhsiao    時間: 2012-7-7 16:38

第6題
若某變換為:將平面上的圖形以\(x\)軸為基準線作2倍的縱向伸縮,再依\(y\)軸方向作3倍推移,再對於直線\(x+y=0\)作鏡射,再以原點為中心旋轉\(270^{\circ}\),則此變換矩陣為   

題目的第二話句"y軸方向作3倍推移"有點不太清楚

樓下正解...我的打錯了
作者: meifang    時間: 2012-7-7 19:17

我考試的時候 把那句話看了好幾遍 回去看課本才發現 沿y軸推移是指 延鉛直方向平移x坐標的r倍
所以應該是這樣
以x軸為基準線做2倍的縱向伸縮 \(\begin{bmatrix}
1 & 0\\
0 & 2
\end{bmatrix}\)
依y軸方向做3倍推移\(\begin{bmatrix}
1 & 0\\
3 & 1
\end{bmatrix}\)
對x+y=0做鏡射\(\begin{bmatrix}
0 & -1\\
-1 & 0
\end{bmatrix}\)
以原點為中心旋轉270度\(\begin{bmatrix}
0 & 1\\
-1 & 0
\end{bmatrix}\)
作者: Jacob    時間: 2012-7-7 22:38     標題: 想請問填充4 跟13,謝謝!

想請問填充4跟13,謝謝!

[ 本帖最後由 Jacob 於 2012-7-7 10:56 PM 編輯 ]
作者: chiang    時間: 2012-7-7 22:59     標題: why?

引用:
原帖由 andyhsiao 於 2012-7-7 04:02 PM 發表
第八題

截面剛好是一個邊長為1正六邊形
對不起
幾何觀念不好
想像力也很差
可不可以請教一下
為啥會是正六邊形??
可不可以解釋一下??
我想了一個下午......
作者: chiang    時間: 2012-7-7 23:07     標題: 貢獻一下~~

引用:
原帖由 Jacob 於 2012-7-7 10:38 PM 發表
想請問填充4跟13,謝謝!
這是我今天解的題
參考看看
不過
目前我還是對第8題很無言~~
雖說已經有高手說她截面為正六邊形~~

附件: 基隆女中101.pdf (2012-7-7 23:07, 551.78 KB) / 該附件被下載次數 5907
https://math.pro/db/attachment.php?aid=1361&k=d1efdacbc95561871f641321282d5516&t=1732313811
作者: Jacob    時間: 2012-7-8 01:47     標題: 回復 12# chiang 的帖子

謝謝老師的分享
作者: andyhsiao    時間: 2012-7-8 08:43

真的想像不出來建議真的做一個正八面體模型

他的條件是: (1)跟藍紅兩面平行切下去(2)分成兩個全等立體
那就是從中點(P,Q,R,...)切下去...PR斜切下去...每個邊長度都是1
角QPR是120度




圖片附件: 3.jpg (2012-7-8 08:43, 47.14 KB) / 該附件被下載次數 6846
https://math.pro/db/attachment.php?aid=1363&k=98f7fda272616b35a5d20654287c3410&t=1732313811


作者: chiang    時間: 2012-7-8 09:30     標題: 了不起!

看過您所提供的圖…(我是有想做一個啦…)
您的圖示解決了!
給你按個讚!
作者: chiang    時間: 2012-7-8 09:36     標題: 解出來不一樣!

引用:
原帖由 meifang 於 2012-7-7 07:17 PM 發表
我考試的時候 把那句話看了好幾遍 回去看課本才發現 沿y軸推移是指 延鉛直方向平移x坐標的r倍
所以應該是這樣
以x軸為基準線做2倍的縱向伸縮 \(\begin{bmatrix}
1 & 0\\
0 & 2
\end{bmatrix}\)
依y軸方向做3倍推移\ ...
我昨晚到睡前解算
答案跟您的做法…
"兩個不同世界"
為什麼!
(…昨晚夢見火星和地球大戰…)
作者: ok_ok0987    時間: 2012-7-8 14:52     標題: 回復 10# Jacob 的帖子

第13題
設數列\( \langle\; a_n \rangle\;,\langle\; b_n \rangle\; \)滿足\( a_0+b_0=2 \),且對每一正整數\(n\),恆有\( a_n=\sqrt{3}a_{n-1}-b_{n-1} \)及\( b_n=a_{n-1}+\sqrt{3}b_{n-1} \),則\( a_{18}+b_{18}= \)   

1.寫成矩陣
2.湊成旋轉矩陣,得到逆時針旋轉30度
3.一次:轉30度,長度乘2倍
4.共轉540度,長度2^18次方
5點點點ans
作者: andyhsiao    時間: 2012-7-8 15:44

引用:
原帖由 chiang 於 2012-7-8 09:36 AM 發表



我昨晚到睡前解算
答案跟您的做法…
"兩個不同世界"
為什麼!
(…昨晚夢見火星和地球大戰…)
可以把你作法寫出來...大家參考看看^^
作者: chiang    時間: 2012-7-9 11:16     標題: 顛倒

引用:
原帖由 andyhsiao 於 2012-7-8 03:44 PM 發表

可以把你作法寫出來...大家參考看看^^
.....我發現
我的運算過程是'顛倒'
也就是說我的矩陣是顛倒的```
還真是想暈倒``
作者: eyeready    時間: 2016-4-23 22:58

4.
\( a \in R \),過\( P(a,2) \)作\( y=f(x)=x^3-3x^2+2 \)的切線,若所作的切線恰有一條,試求\(a\)的範圍   

請教填充第4題,為何a=0時,切線也恰有一條,答案怎沒有呢?




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0