Board logo

標題: 100豐原高中 [打印本頁]

作者: 八神庵    時間: 2011-5-29 17:55     標題: 100豐原高中

感謝PTT實習教師板板友lairabbit分享
請各位享用吧
PS.有參照該分享文底下推文修正檔案了

[ 本帖最後由 八神庵 於 2011-5-30 09:31 PM 編輯 ]

附件: 100豐原高中.rar (2011-5-30 21:31, 22.8 KB) / 該附件被下載次數 10329
https://math.pro/db/attachment.php?aid=396&k=af1e7ecb8e54b12a3a765fd7f2ed56e5&t=1713499610
作者: bugmens    時間: 2011-5-29 18:34

3.
正方形ABCD中一點P,已知\( \overline{PA}=7 \)、\( \overline{PB}=3 \)、\( \overline{PC}=5 \),求此正方形的面積。

設正方形ABCD內部有一點P滿足\( \overline{AP}=3 \),\( \overline{BP}=4 \sqrt{2} \),\( \overline{DP}=5 \sqrt{2} \),試求正方形ABCD的面積。
(建中通訊解題第17期)


2.
兩島嶼,一島為凸n邊形,另一島為圓形,已知兩島周長一樣,島嶼沿岸d公里內皆為該島的領海,求證此兩島的領海面積一樣大?

一國之領海為由其海岸線向外延伸5浬所成區域,今有甲、乙二島國,甲島國為一圓形,乙島國為一凸六邊形。若甲、乙二島國之海岸線長相等,求證此二島國之領海相等。
(高中數學101 P139)


9.
\( \displaystyle S_n=\sum_{k=2}^n log_2 (cos \frac{\pi}{2^k}) \),\( \displaystyle S=\lim_{n \to \infty}S_n \),求S?

設\( \displaystyle S_n=\sum_{k=2}^n log_2 (cos \frac{\pi}{2^k}) \),求證:\( -1<S_n<0 \)
(97潮州高中)
作者: aonzoe    時間: 2011-5-29 18:51     標題: 回復 1# 八神庵 的帖子

想請教4、7、8題的解法,感恩!
作者: weiye    時間: 2011-5-29 21:32

第 4 題:一曲線 \(\Gamma :y=\sqrt{2ax}\) 上一點 \(P\),已知 \(\overline{PO}=1\),\(P\) 對 \(x\) 軸做垂足 \(H\),求被 \(\Gamma, \overline{PH}, x\) 軸圍住,繞 \(x\) 軸旋轉的旋轉體體積 \(V(a)\) 的最大值。

解答:

令 \(P(2at^2, 2at)\),其中 \(t>0\),

則 \(\overline{OP}^2=(2at^2)^2+(2at)^2=1\)

  \(\Rightarrow 4a^2t^4+4a^2t^2=1\)

\(\displaystyle V(a)=\int_0^{2at^2} \pi \left(\sqrt{2ax}\right)^2 dx\)

  \(\displaystyle =\pi ax^2\Big|_0^{2at^2}\)

  \(=4\pi a^3t^4\)

由算幾不等式,可得

  \(\displaystyle \frac{4a^2t^4+2a^2t^2+2a^2t^2}{3}\geq\sqrt[3]{4a^2t^4\cdot 2a^2t^2\cdot 2a^2t^2}\)

  \(\displaystyle \Leftrightarrow \frac{1}{3}\geq\sqrt[3]{16a^6t^8}\)

  \(\displaystyle \Leftrightarrow \frac{\sqrt{3}\pi}{9}\geq 4\pi a^3t^4\)

所以,\(V(a)\) 的最大值為 \(\displaystyle\frac{\sqrt{3}\pi}{9},\)

且此時解聯立方程式 \(\displaystyle 4a^2t^4=2a^2t^2\) 且 \(4a^2t^4+4a^2t^2=1\),

可得 \(\displaystyle a=\frac{1}{\sqrt{3}}, t=\frac{1}{\sqrt{2}}\)

註:如果有誤,希望網友能請不吝告知,感謝。
作者: weiye    時間: 2011-5-29 21:59

第 9 題:

\(\displaystyle S_n=\log_2\left(\cos\frac{\pi}{2^2}\cos\frac{\pi}{2^3}\cdots\cos\frac{\pi}{2^{n-1}}\cos\frac{\pi}{2^n}\right)\)

 \(\displaystyle=\log_2\left(\frac{\displaystyle\cos\frac{\pi}{2^2}\cos\frac{\pi}{2^3}\cdots\cos\frac{\pi}{2^{n-1}}\cdot 2\cos\frac{\pi}{2^n}\sin\frac{\pi}{2^n}}{\displaystyle2\sin\frac{\pi}{2^n}}\right)\)

 \(\displaystyle=\log_2\left(\frac{\displaystyle\cos\frac{\pi}{2^2}\cos\frac{\pi}{2^3}\cdots\cos\frac{\pi}{2^{n-1}}\cdot \sin\frac{\pi}{2^{n-1}}}{\displaystyle2\sin\frac{\pi}{2^n}}\right)\)

 \(=\cdots\)

 \(\displaystyle=\log_2\left(\frac{\displaystyle\sin\frac{\pi}{2}}{\displaystyle2^{n-1}\sin\frac{\pi}{2^n}}\right)\)

 \(\displaystyle=\log_2\left(\frac{1}{\displaystyle2^{n-1}\sin\frac{\pi}{2^n}}\right)\)

 \(\displaystyle=\log_2\left(\frac{2}{\pi}\cdot\frac{\displaystyle\frac{\pi}{2^n}}{\displaystyle\sin\frac{\pi}{2^n}}\right)\)

因為 \(\log_2 x\) 為連續函數,且 \(\displaystyle\lim_{n\to\infty}\frac{\displaystyle\frac{\pi}{2^n}}{\displaystyle\sin\frac{\pi}{2^n}}=1\)

所以 \(\displaystyle\lim_{n\to\infty}S_n=\log_2\left(\frac{2}{\pi}\cdot\lim_{n\to\infty}\frac{\displaystyle\frac{\pi}{2^n}}{\displaystyle\sin\frac{\pi}{2^n}}\right)\)

      \(\displaystyle=\log_2\left(\frac{2}{\pi}\cdot1\right)\)

      \(=1-\log_2\pi.\)


註:如果有錯誤的地方,希望網友能請不吝告知,感謝。 ^__^
作者: weiye    時間: 2011-5-29 22:29

第 7 題:

若 \(n\) 為偶數,則 \(\displaystyle a_n=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\cdots+\left((n-1)^2-n^2\right)\)

           \(=(-3)+(-7)+\cdots+(-2n+1)\)

           \(\displaystyle =-\left(\frac{\frac{n}{2}\cdot(2n+2)}{2}\right)\)

           \(\displaystyle =-\frac{n(n+1)}{2}\)

若 \(n\) 為奇數,則 \(\displaystyle a_n=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\cdots+\left((n-2)^2-(n-1)^2\right)+n^2\)

           \(\displaystyle =-\frac{(n-1)n}{2}+n^2\)

           \(\displaystyle =\frac{n(n+1)}{2}\)

所以 \(\displaystyle a_n=(-1)^{n+1}\cdot\frac{n(n+1)}{2}\)

故,

\(\displaystyle \sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{a_n}=\sum_{n=1}^{\infty}\frac{2}{n(n+1)}\)

       \(\displaystyle =2\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

       \(=2.\)

註:如果有錯誤的地方,希望網友能請不吝告知,感謝。 ^__^
作者: iamcfg    時間: 2011-5-29 23:20

第8題提供一點idea  我沒有詳細作出來

假設 \(\displaystyle{z= \frac{1}{2}( \cos(x)+i \sin(x))}\)

此題會是 \(z\) 的無窮等比級數的虛部

所以 \(\displaystyle{a=\frac{z}{1-z}}\)  算完再找虛部
作者: weiye    時間: 2011-5-29 23:43

第 8 題:
引用:
原帖由 iamcfg 於 2011-5-29 11:20 PM 發表
第8題提供一點idea  我沒有詳細作出來

假設 \(\displaystyle{z= \frac{1}{2}( \cos(x)+i \sin(x))}\)

此題會是 \(z\) 的無窮等比級數的虛部

所以 \(\displaystyle{a=\frac{z}{1-z}}\)  算完再找虛部 ...
令 \(\displaystyle z=\frac{1}{2}\left(\cos x+i\sin x\right)\),

則 \(\displaystyle z+z^2+z^3+\cdots=\frac{z}{1-z}=\frac{\frac{1}{2}\left(\cos x+i\sin x\right)}{1-\frac{1}{2}\left(\cos x+i\sin x\right)}\)

          \(\displaystyle =\frac{\left(\cos x+i\sin x\right)}{2-\cos x-i \sin x}\)

          \(\displaystyle =\frac{\left(\cos x+i\sin x\right)}{\left(2-\cos x\right)^2+\sin^2 x}\cdot\left(2-\cos x+i\sin x\right)\)


題目所求即為 \(z+z^2+z^3+\cdots\) 的虛部 \(\displaystyle =\frac{\cos x\sin x+\sin x\left(2-\cos x\right)}{\left(2-\cos x\right)^2+\sin^2 x}\)

                   \(\displaystyle =\frac{2\sin x}{5-4\cos x}.\)


註:感謝 iamcfg 提供這個超讚的方法!
作者: aonzoe    時間: 2011-5-30 14:36     標題: 回復 8# weiye 的帖子

感謝兩位老師的快速解答:)
另外補充一下:
第8題好像還有第二小題,要解出An的範圍(0<=x<=2π)
作者: weiye    時間: 2011-5-30 16:01     標題: 回復 9# aonzoe 的帖子

令 \(\displaystyle k=\frac{2\sin x}{5-4\cos x}\)

則 \(\displaystyle 2\sin x+4k\cos x=5k\)

 \(\displaystyle \Rightarrow \left|5k\right|\leq\sqrt{2^2+\left(4k\right)^2}\)

  \(\displaystyle \Rightarrow \frac{-2}{3}\leq k\leq\frac{2}{3}\)

所以 \(\displaystyle \frac{-2}{3}\leq \lim_{n\to\infty} a_n\leq\frac{2}{3}\)
作者: cally0119    時間: 2011-5-30 22:48

請教一下1,5,6三題的想法?
作者: JOE    時間: 2011-5-31 03:33

請問類似第一題的內切球問題

之前有看過板上的討論

邊長a的正四面體內切若干個(忘了題目)相同大小的球,求球半徑?

請問有大大記得是哪校考題嗎
作者: dream10    時間: 2011-6-2 22:48

內切球~~97台中二中有考~~
作者: JOE    時間: 2011-6-5 14:12

請問第1,5,6有大大可以指點一下嗎  謝謝
作者: weiye    時間: 2011-6-5 22:07

第 6 題:

設拋物線方程式為 \(y=ax^2+bx+c\)

拋物線通過 \((-1,-1), (2,2)\)  帶入,

可得 \(-1=a-b+c, 2=4a+2b+c\)

\(\Rightarrow b=1-a, c=-2a\)

「拋物線與 \(x\) 軸所截長度」的平方 \(\displaystyle = \left(-\frac{b}{a}\right)^2-4\left(\frac{c}{a}\right)\)

                 \(\displaystyle = \left(1-\frac{1}{a}\right)^2 +8\)

                 \(\geq 8\)

當 \(a=1\) 時,拋物線與 \(x\) 軸所截長度有最小值為 \(2\sqrt{2}\)

且此時 \(b=0,c=-2\),拋物線方程式為 \(y=x^2-2\)
作者: weiye    時間: 2011-6-5 22:29

第 5 題:

設 \(\Gamma\) 上的動點 \(\displaystyle P(t,t^2-\frac{1}{2})\)

則過 \(P\) 點的法線方程式為

      \(\displaystyle y-\left(t^2-\frac{1}{2}\right)=-\frac{1}{2t}\left(x-t\right)\)

通過 \((a,3)\) 帶入,可得 \(t\) 的一元三次方程式 \(2t^3-6t-a=0\)

依題意此 \(t\) 的一元三次方程式應該有三實根,

令 \(f(t)=2t^3-6t-a\)

則 \(f'(t)=0\Rightarrow t=\pm 1\)

因為 \(f(t)=0\) 有三實根,

所以




\(\Rightarrow f(-1)>0\) 且 \(f(1)<0\)

\(\Rightarrow -4<a<4.\)
作者: weiye    時間: 2011-6-5 23:14

第 1 題:

設球半徑為 \(r\)

則 \(r\cdot\sqrt{3} + 4r+r\cdot\sqrt{3}=10\cdot\sqrt{3}\)

\(\displaystyle\Rightarrow r=10\sqrt{3}-15.\)




((我不太會畫立體圖,所以我用文字說明好了!))

設上面四顆球為 \(A,B,C,D\),

 對應下面的四顆球為 \(E,F,G,H\),

 最中間球為 \(I\),

則因為 \(A,I,G\) 的球心與此正立方體對角線上的頂點會共線,

 且 \(A\) 的球心到它最接近的正立方體頂點的距離=\(G\) 的球心到它最接近的正立方體頂點的距離=\(r\sqrt{3}\),

  以及 \(\overline{AG}=4r\),

 所以此正立方體的對角線長為 \(r\cdot\sqrt{3} + 4r+r\cdot\sqrt{3}.\)



註:如果以上想法有錯誤的地方,希望高手可以不吝告知,感謝!
作者: wbyeombd    時間: 2011-6-7 13:47     標題: 回復 17# weiye 的帖子


真的不好畫耶...
我用Cabri 3D
不知道畫得對不對,不過我很確定很多步驟是多餘的...
Cabri 3D 外行的…  囧

[ 本帖最後由 wbyeombd 於 2011-6-9 12:10 PM 編輯 ]

圖片附件: 正方體內放大小相同的九個球.jpg (2011-6-9 12:10, 188.71 KB) / 該附件被下載次數 6388
https://math.pro/db/attachment.php?aid=465&k=5b5bce16813d3b7df3c39574c909bc01&t=1713499610


作者: bugmens    時間: 2011-6-10 18:42

1.一個邊長10cm的正立方體內塞九個大小相同的球,中心球的球心在正立方體的中心,其他球皆與三個相鄰面以及中心球相切,求球的半徑?

9個相同的球被包裝在一個邊長為1的正立方體內,其中一個球的球心位於正立方體的中心點上,而其他的球均與中心球相切且與正立方體的三各面相切,則每一個球的半徑為  單位長。
(A)\( \displaystyle 1-\frac{\sqrt{3}}{2} \) (B) \( \displaystyle \frac{2 \sqrt{3}-3}{2} \) (B) \( \displaystyle \frac{\sqrt{2}}{6} \) (D) \( \displaystyle \frac{1}{4} \) (E) \( \displaystyle \frac{2\sqrt{3}-\sqrt{6}}{4} \)
(97全國高中聯招)

101.10.16補充
將一個半徑為5公分的鐵球,放入一個邊長10公分的正方體容器,再放入另一個小鉛球,然後蓋上正方體容器的蓋子,使蓋子與正方體完全密合,則這個鉛球的最大半徑為  公分
(100高中數學能力競賽 第一區筆試(二)試題,https://math.pro/db/thread-1349-1-1.html)

圖片附件: 100豐原高中.png (2011-6-10 18:42, 39.8 KB) / 該附件被下載次數 5566
https://math.pro/db/attachment.php?aid=482&k=9a53b8218d8b5c9d751f5703c011fe2b&t=1713499610



附件: 9個球面彼此相切.rar (2011-6-10 18:42, 62.58 KB) / 該附件被下載次數 8518
https://math.pro/db/attachment.php?aid=483&k=847c9d1acbfa7ee3fffc7ee03926e5dc&t=1713499610
作者: waitpub    時間: 2012-3-13 11:52     標題: 回復 15# weiye 的帖子

請問一下老師式子中所說的拋物線與 \(x\) 軸所截長度的平方
為何不是(b^2-4ac)/(4a)?
我的a跟老師一樣都是等於1,
但拋物線與 x 軸所截長度最小值算出來卻是根號2。
作者: weiye    時間: 2012-3-13 14:45     標題: 回復 20# waitpub 的帖子

設拋物線 \(y=ax^2+bx+c\) 與 \(x\) 軸兩交點為 \((x_1,0), (x_2,0)\)



\(\displaystyle \left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{-b}{a}\right)^2-\frac{c}{a}=\frac{b^2-4ac}{a^2}\)

或是可以如下,

\(\displaystyle \left(x_1-x_2\right)^2=\left(\frac{-b+\sqrt{b^2-4ac}}{2a}-\frac{-b-\sqrt{b^2-4ac}}{2a}\right)^2=\left(2\cdot\frac{\sqrt{b^2-4ac}}{2a}\right)^2=\frac{b^2-4ac}{a^2}\)
作者: waitpub    時間: 2012-3-13 15:17     標題: 回復 21# weiye 的帖子

我懂了,我以為是拋物線和x軸所截的長度一半。
謝謝老師。
作者: kggj5220    時間: 2015-9-21 15:46     標題: 想請教第10題~~

我把轉移矩陣找出來是

        白 |  紅
-------------------
白         |
-------------------
紅         |

就B袋子而言,其轉移矩陣為\(\begin{pmatrix} \frac{3}{4}&\frac{1}{2} \\ \frac{1}{4} &\frac{1}{2} \end{pmatrix} \)


\(\begin{pmatrix} \frac{3}{4}&\frac{1}{2} \\ \frac{1}{4} &\frac{1}{2} \end{pmatrix}
\begin{pmatrix}1\\0 \end{pmatrix} \) =\( \begin{pmatrix}\frac{3}{4}\\ \frac{1}{4} \end{pmatrix} \)
                                     .
                                     .
而第四局為甚麼不是直接算出四次之後的解,而還要寫成遞迴式???
作者: pretext    時間: 2015-9-21 21:13     標題: 回復 23# kggj5220 的帖子

可以這樣解吧,寫成什麼遞迴式啊?
作者: thepiano    時間: 2015-9-21 21:36     標題: 回復 23# kggj5220 的帖子

要直接乘 4 次也可以,而用遞迴可處理 n 局的情形

[ 本帖最後由 thepiano 於 2015-9-21 09:41 PM 編輯 ]
作者: kggj5220    時間: 2015-9-21 22:38     標題: 回復樓上二位老師

是這樣做嗎,我做好幾次都是這樣,但跟答案不同

第一次
\(\begin{pmatrix} \frac{3}{4}&\frac{1}{2} \\ \frac{1}{4} &\frac{1}{2} \end{pmatrix}
\begin{pmatrix}1\\0 \end{pmatrix} \) =\( \begin{pmatrix}\frac{3}{4}\\ \frac{1}{4} \end{pmatrix} \)
第二次
\(\begin{pmatrix} \frac{3}{4}&\frac{1}{2} \\ \frac{1}{4} &\frac{1}{2} \end{pmatrix}
\begin{pmatrix}\frac{3}{4}\\ \frac{1}{4} \end{pmatrix} \) =\( \begin{pmatrix}\frac{11}{16}\\ \frac{5}{16} \end{pmatrix} \)
第三次
\(\begin{pmatrix} \frac{3}{4}&\frac{1}{2} \\ \frac{1}{4} &\frac{1}{2} \end{pmatrix}
\begin{pmatrix}\frac{11}{16}\\ \frac{5}{16}\end{pmatrix} \) =\( \begin{pmatrix}\frac{43}{64}\\ \frac{21}{64} \end{pmatrix} \)
第四次
\(\begin{pmatrix} \frac{3}{4}&\frac{1}{2} \\ \frac{1}{4} &\frac{1}{2} \end{pmatrix}
\begin{pmatrix}\frac{43}{64}\\ \frac{21}{64}\end{pmatrix} \) =\( \begin{pmatrix}\frac{171}{256}\\ \frac{85}{256} \end{pmatrix} \)
作者: thepiano    時間: 2015-9-22 06:14     標題: 回復 26# kggj5220 的帖子

您應該是讀 寸絲兄的筆記,這題他忘了約分啦
作者: kggj5220    時間: 2015-9-22 10:50     標題: 回復 27# thepiano 的帖子

阿哈哈哈哈,實在太對不起啦 出這種差錯!!!!
sorry   sorry
沒錯我是算寸絲大大的講義~~

感謝皮大熱心回復




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0