原帖由 rudin 於 2011-4-7 11:33 AM 發表
圓錐曲線題:給一雙曲線,過其中一個焦點的焦弦與雙曲線交於A,B兩點,求A,B兩點與另一焦點所成的三角形面積最小值,給的答案為A,B為正焦弦時即為所求,要如何證明?苦思好幾天了! ...
原帖由 Ellipse 於 2011-4-8 11:27 PM 發表
則|y1-y2|=|2mb^2*a(1+m^2)^0.5/(b^2-a^2*m^2)|
=| 2ab^2(1+m^2)^0.5/(a^2-b^2/m^2) |
>=| 2ab^2(1+m^2)^0.5/a^2|
>=| 2ab^2/a^2|=2b^2/a=正焦弦長-------------(*7)
原帖由 老王 於 2011-4-12 07:00 PM 發表
這倒挺有趣的~~~
假設兩焦點為\(\displaystyle F_1,F_2 \)
並且\(\displaystyle A-F_1-B \)
那麼由定義會有
\(\displaystyle AF_2-AF_1=BF_2-BF_1=2a \)
再令\(\displaystyle AF_1=p,BF_1=q \)
會有 ...
歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) | 論壇程式使用 Discuz! 6.1.0 |