E [ g(X) ] >= g ( E[x] ) if g convex
Let L(X)=aX+b , then E [ g(X) ] >=E [ L(X) ] = E[aX+b] = a*E[x]+b = L(E[X]) = g(E[X])
這是找到的Jensen's inequality,但這跟第4題有甚麼關係?
新增,後來再找到一些資料,叫做Jensen's Inequality and its Applications,得證了。
x1,x2,...,xn. Let a1,a2,...an>=0
E [ g(X) ] = E [ g(x1)+g(x2)+...+g(xn)] = a1*g(x1)+a2*g(x2)+...+an*g(xn) / a1+a2+...+an
g [ E(X) ] = g [ a1*x1+a2*x2+...+an*xn / a1+a2+...+an ]
在第4題中,n=2,a1*g(x1)+a2*g(x2) / a1+a2 > g [ a1*x1+a2*x2 / a1+a2 ]
g(x)=x^n , a1=a2=1 , x1=a , x2=b
(x^n + y^n) / 2 > ( a+b / 2 )^n ,得證。 作者: mathca 時間: 2016-1-2 10:16 標題: 回復 5# XYZ 的帖子