14 12
發新話題
打印

95中一中

95中一中

想請問各位老師計算第三題如何下手?

附件

95台中一中.pdf (120.13 KB)

2022-7-15 14:55, 下載次數: 12212

TOP

h ttp://forum.nta.org.tw/examservice/search.php 連結已失效
請善用全文搜尋,請選"高中職教甄考古題讀書交流區"
搜尋關鍵字為"四面體內切球",搜尋結果"考古題分享...."
就有這題的答案

另外搜尋關鍵字改為"中一中",還有其他題目的解答

TOP

老師你好,我找過了,裡面沒有耶。

TOP

引用:
原帖由 Duncan 於 2010-6-29 11:01 PM 發表
老師你好,我找過了,裡面沒有耶。
你問的是計算第三題,我找過是沒有
bugmens大誤會你的意思,幫你找乙部份的第三題....
這一個行列式要採用行提列灌
每行提x_i,再灌回到相對應的列上
就變成一個平方的行列式
再把每一列加到第一列
提出來之後再把第一行乘負1加到其他四行
變得一個上三角行列式,而其Trace為五個1
最後再利用根與係數求出提出來的那一個括號就ok啦.....Ans:3

TOP

原來是我搞錯了

TOP

我把八神庵回覆的內容詳細打下來好了。
(我都打完字了,不PO上來也浪費。= =)


計算第 3 題:

設方程式 \(x^5-2x^4 + x^3 + 1=0\) 之五根為 \(x_1 , x_2 , x_3 , x_4 , x_5\),設 \(a_{ij} = 1+ x_i x_j\) (若 \(i = j\)),\(a_{ij} = x_i x_j\) (若 \(i\neq j\) ),

試求 \(\displaystyle\left|\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}\right|\) 之值?



解答:

令 \(x_1=a , x_2=b , x_3=c , x_4=d , x_5=e\),則所求如下,

\(\displaystyle \left|\begin{array}{ccccc}
1+a^2 & ab & ac & ad & ae \\
ab & 1+b^2 & bc & bd & be \\
ac & bc & 1+c^2 & cd & ce \\
ad & bd & cd & 1+d^2 & de \\
ae & be & ce & de & 1+e^2
\end{array}\right|\)

\(\displaystyle =\left|\begin{array}{ccccc}
1+a^2 & b^2 & c^2 & d^2 & e^2 \\
a^2 & 1+b^2 & b^2 & d^2 & e^2 \\
a^2 & b^2 & 1+c^2 & d^2 & e^2 \\
a^2 & b^2 & c^2 & 1+d^2 & e^2 \\
a^2 & b^2 & c^2 & d^2 & 1+e^2
\end{array}\right|\)


\(\displaystyle =\left|\begin{array}{ccccc}
1+a^2+b^2+c^2+d^2+e^2 & b^2 & c^2 & d^2 & e^2 \\
1+a^2+b^2+c^2+d^2+e^2 & 1+b^2 & b^2 & d^2 & e^2 \\
1+a^2+b^2+c^2+d^2+e^2 & b^2 & 1+c^2 & d^2 & e^2 \\
1+a^2+b^2+c^2+d^2+e^2 & b^2 & c^2 & 1+d^2 & e^2 \\
1+a^2+b^2+c^2+d^2+e^2 & b^2 & c^2 & d^2 & 1+e^2
\end{array}\right|\)


\(\displaystyle =\left(1+a^2+b^2+c^2+d^2+e^2\right)\left|\begin{array}{ccccc}
1 & b^2 & c^2 & d^2 & e^2 \\
1 & 1+b^2 & b^2 & d^2 & e^2 \\
1 & b^2 & 1+c^2 & d^2 & e^2 \\
1 & b^2 & c^2 & 1+d^2 & e^2 \\
1 & b^2 & c^2 & d^2 & 1+e^2
\end{array}\right|\)


\(\displaystyle =\left(1+a^2+b^2+c^2+d^2+e^2\right)\left|\begin{array}{ccccc}
1 & b^2 & c^2 & d^2 & e^2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right|\)

\(\displaystyle =1+a^2+b^2+c^2+d^2+e^2\)

\(\displaystyle =1+\left(a+b+c+d+e\right)^2-2\left(ab+ac+ad+ae+bc+bd+be+cd+ce+de\right)\)

\(\displaystyle =1+2^2-2\times1\)

\(\displaystyle =3\)


證明對任意正整數 \(n\),恆有
\[1+\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\cdots+\frac{1}{n^3}<1.25\].


證明:

先觀常一般項,
\[\frac{1}{n^3} < \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)} = \frac{1}{2}\left(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right),\;\forall n>1.\]

所以,

\[1+\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\cdots+\frac{1}{n^3} < 1+\frac{1}{1\cdot2\cdot3} + \frac{1}{2\cdot3\cdot4}+\cdots+\frac{1}{\left(n-1\right)n\left(n+1\right)}\]
\[=1+\frac{1}{2}\left\{\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}\right)+\left(\frac{1}{2\cdot3}-\frac{1}{3\cdot4}\right)+\cdots+\left(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\right\} = 1+\frac{1}{4} -\frac{1}{2n\left(n+1\right)}<\frac{5}{4}.\]

故,對任意正整數 \(n\),\(\displaystyle 1+\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\cdots+\frac{1}{n^3}<1.25\) 恆成立.

多喝水。

TOP

謝謝各位老師

TOP

回復 2# bugmens 的帖子

為何「全國教師會選聘服務網」我無法進去呀?
會出現"對不起.管理員封禁了您的 IP 地址.聯系管理員請點擊這裡"訊息!
管理員也無法聯繫!!
誰知道出了什麼問題?要找誰解決呀??

TOP

引用:
原帖由 moemiau 於 2010-7-2 03:51 PM 發表
為何「全國教師會選聘服務網」我無法進去呀?
會出現"對不起.管理員封禁了您的 IP 地址.聯系管理員請點擊這裡"訊息!
管理員也無法聯繫!!
誰知道出了什麼問題?要找誰解決呀?? ...
這位仁兄
這裡是weiye大提供的空間,跟全教會選聘網無關啦
只是希望說別讓討論數學的空間沒了,並順便實驗"數學式顯示"....
關於全教會選聘網的問題
請看以下連結
http://www.shiner.idv.tw/teachers/viewtopic.php?f=53&t=1545

TOP

想請教乙部分的(2)(4)

TOP

 14 12
發新話題