27 123
發新話題
打印

台大資工甄選入學指定項目考試

台大資工甄選入學指定項目考試

這份考古題大概在2,3月的時候在PTT數學版和高中版就會開始討論
但有些題目實在是太古怪了,每年都拿出來討論卻總是得不到個答案
我將手邊的資料放出來提供考生參考

\( \displaystyle \sum_{n=1}^{\infty} \frac{4^{2^{n-1}}}{4^{2^{n}}-1} \)=?

\( (\sqrt{23}+\sqrt{27})^{100} \)除以100的餘數為?

求\( e^\pi \)與\( \pi^e \)的大小關係?
利用\( \displaystyle f(x)=\frac{ln(x)}{x} \)當x>e時單調遞減

T={(x,y)|\(x,y \in N,x<1000, x^2-2y^2=1 \)},求T之元素個數
可以用Google搜尋"pell方程式",可以找到公式
前幾組解(3,2),(17,12),(99,70),(577,408),(3363,2378),(19601,13860)...
答案4個

\( \displaystyle \lim_{n \to \infty}(cos \frac{x}{2}cos \frac{x}{4}...cos \frac{x}{2^n}) \)=?
http://www.shiner.idv.tw/teachers/viewtopic.php?p=2935


求\( \displaystyle \frac{10^{10000}}{10^{100}+7} \)被100除的餘數?([]為高斯符號)
https://math.pro/db/viewthread.php?tid=708


已知\( x,y,z \ge 0 \),\( x^2+y^2+z^2=1 \),求\( \displaystyle \frac{x}{1+yz}+\frac{y}{1+zx}+\frac{z}{1+xy} \)的最大值?
http://tw.knowledge.yahoo.com/question/question?qid=1008042902094
連老王都發問了!

附件

不等式.gif (8.62 KB)

2010-3-31 00:37

不等式.gif

台大資工.rar (279.13 KB)

2010-3-31 00:37, 下載次數: 14569

TOP

103臺大資工申請入學第二階段筆試試題
http://www.ptt.cc/bbs/SENIORHIGH/M.1396156101.A.6E9.html



更早的試題解答可以來這裡找-老王的夢田
http://lyingheart6174.pixnet.net/blog/category/217243

附件

103臺大資工申請入學第二階段筆試試題.pdf (260.43 KB)

2014-4-6 05:59, 下載次數: 15658

TOP

前陣子 學生在問
所以也解了一下
已知\( x,y,z \ge 0 \),\( x^2+y^2+z^2=1 \),求\( \displaystyle \frac{x}{1+yz}+\frac{y}{1+zx}+\frac{z}{1+xy} \)的最大值?

請參考附件

附件

2008_NTU_CSIE02.pdf (114.25 KB)

2014-4-6 22:08, 下載次數: 15126

三願: 吃得下,睡得著,笑得出來!

TOP

回復 1# bugmens 的帖子

題目 \( \displaystyle \sum\limits _{n=1}^{\infty}\frac{4^{2^{n-1}}}{4^{2^{n}}-1} \)
令 \( x_{n}=4^{2^{n}} \),利用 \( \displaystyle \frac{x_{n}}{x_{n+1}-1}=\frac{1}{2}\cdot\frac{1}{x_{n}+1}+\frac{1}{2}\cdot\frac{1}{x_{n}-1} \),  \( \frac{1}{x_{n}-1}=\frac{1}{x_{n-1}^{2}-1}=-\frac{1}{2}\cdot\frac{1}{x_{n-1}+1}+\frac{1}{2}\cdot\frac{1}{x_{n-1}-1} \),可得以下:

\(\displaystyle \frac{4^{1}}{4^{2}-1}=\frac{1}{2}\cdot\frac{1}{4^{1}+1}+\frac{1}{2}\cdot\frac{1}{4-1} \)
\(\displaystyle \frac{4^{2}}{4^{4}-1}=\frac{1}{2}\cdot\frac{1}{4^{2}+1}-\frac{1}{4}\cdot\frac{1}{4+1}+\frac{1}{4}\cdot\frac{1}{4-1} \)
\(\displaystyle \frac{4^{4}}{4^{8}-1}=\frac{1}{2}\cdot\frac{1}{4^{4}+1}-\frac{1}{4}\cdot\frac{1}{4^{2}+1}-\frac{1}{8}\cdot\frac{1}{4+1}+\frac{1}{8}\cdot\frac{1}{4-1} \)
\(\displaystyle \frac{4^{3}}{4^{16}-1}=\frac{1}{2}\cdot\frac{1}{4^{8}+1}-\frac{1}{4}\cdot\frac{1}{4^{4}+1}-\frac{1}{8}\cdot\frac{1}{4^{2}+1}-\frac{1}{16}\cdot\frac{1}{4+1}+\frac{1}{16}\cdot\frac{1}{4-1} \)
...
斜的加,從左上往右下加,把每一條斜線加總可得

\( \displaystyle \sum\limits _{n=1}^{m}\frac{4^{2^{n-1}}}{4^{2^{n}}-1}=\frac{1}{2^{m+1}}\sum\limits _{n=1}^{m}\left(\frac{2^{n}}{4^{2^{n-1}}+1}\right)+\frac{2^{m}-1}{2^{m}}\cdot\frac{1}{3}\to\frac{1}{3} \)

題目:\( (\sqrt{23}+\sqrt{27})^{100} \) 除以 100 的餘數,這題應該加上高斯符號
\( (\sqrt{23}+\sqrt{27})^{100}=\left(50+6\sqrt{69}\right)^{50} \)。
令 \( x_{n}=\left(50+6\sqrt{69}\right)^{50}+(50-6\sqrt{69})^{50} \),則 \( x_{n+2}=100x_{n+1}-16x_{n}
\Rightarrow x_{50}\equiv x_{0}\cdot(-16)^{25}\equiv-2^{101}  (Mod  100) \)。
\( \phi(25)=20 \Rightarrow x_{50}\equiv-2  (Mod  25), x_{50}\equiv0  (Mod  4) \),故 \( x_{50}\equiv48  (Mod  100) \)。
注意 \( 0<(50-6\sqrt{69})^{50}<1 \),故 \( x_{50}=\left(50+6\sqrt{69}\right)^{50}+(50-6\sqrt{69})^{50}=\left[\left(50+6\sqrt{69}\right)^{50}\right]+1 \)。
因此 \( \left[(\sqrt{23}+\sqrt{27})^{100}\right]\equiv47 (Mod  100) \)。

[ 本帖最後由 tsusy 於 2014-4-13 11:14 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

台大資工105二階筆試B部分

可以請問大家第4~6還有第8題的解法嗎
說實在都是一些沒看過的@@
謝謝大家~~

附件

105台大資工二階.pdf (433.81 KB)

2017-3-12 20:06, 下載次數: 13867

TOP

回復 1# 李昶毅 的帖子

B4. 先把奇數項的負號改成正,再減去兩個奇數項
改正的部分和原偶數項裂項相消,
減去兩個奇數項的部分,也是裂項,但不相消變成 \( \frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\ldots \) 會變成 \( \arctan x \) 的Maclaurin series 代入 \( x=1 \)

\( \begin{aligned}\sum\frac{(-1)^{k}}{4k^{2}-1} & =\sum\frac{1}{4k^{2}-1}-2\sum\limits _{k\mbox{ odd}}\frac{1}{4k^{2}-1}\\
& =\frac{1}{2}\sum\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)-\sum\limits _{k\mbox{ odd}}\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\\
& =\frac{1}{2}-\sum\limits _{k\mbox{ odd}}\frac{(-1)^{k+1}}{2k-1}=\frac{1}{2}-\tan^{-1}1=\frac{1}{2}-\frac{\pi}{4}
\end{aligned} \)
網頁方程式編輯 imatheq

TOP

後面那一項是不是大學才會學到阿@@
好像不是我目前能力所及QQ

TOP

回復 1# 李昶毅 的帖子

B6. 感覺抄錯題目了

按上面的題目,移項提出 a-c,再用正弦定理、三角不等式可得 a-c=0

變成等腰三角形 a=c,無法求得角 C
網頁方程式編輯 imatheq

TOP

回復 1# 李昶毅 的帖子

B5. 有類似題...

分解,配對,算幾

注意 \( a^2+ab+ac+bc = (a+b)(a+c) \)

及 \( 3a+b+2c = (a+b) + 2(a+c)\)

由算幾不等式有 \( \frac{3a+b+2c}{2}=\frac{(a+b)+(2a+2c)}{2}\geq\sqrt{2(a+b)(a+c)}=\sqrt{12+2\sqrt{20}}=\sqrt{10}+\sqrt{2} \)

故 \( 3a+b+2c \geq 2\sqrt{10} + 2\sqrt{2} \) (等號我懶得驗了...)
網頁方程式編輯 imatheq

TOP

回復 4# tsusy 的帖子

B6
應是\((a-c)\left( \sin A+\sin C \right)=\left( a-b \right)\sin B\)

TOP

 27 123
發新話題