引用:
原帖由 arend 於 2009-7-24 12:20 PM 發表
1.一個正三角形ABC邊長為5, 三角型內一點P, PA=4 , PC=3, 求cosABP
設 \(\displaystyle A(0,0), C(5,0), B(\frac{5}{2}, \frac{5\sqrt{3}}{2})\),則
依題意,因為 \(\overline{AP}^2+\overline{CP}^2=\overline{AC}^2\),所以 \(\displaystyle \angle APC=90^\circ \Rightarrow \cos \angle PAC=\frac{4}{5}, \sin \angle PAC=\frac{3}{5}.\)
因此 \(P\) 點坐標為 \(\displaystyle (\frac{16}{5},\frac{12}{5})\),可得 \(\displaystyle \overline{BP}^2 = \left(\frac{5}{2} - \frac{16}{5}\right)^2+\left(\frac{5\sqrt{3}}{2}-\frac{12}{5}\right)^2=25-12\sqrt{3}.\)
在 \(\triangle ABP\) 中,由餘弦定理可得
\(\displaystyle \cos \angle ABP = \frac{\overline{AB}^2 + \overline{BP}^2 - \overline{AP}^2}{2\cdot \overline{AB}\cdot \overline{BP}}=\frac{25 + \left(25-12\sqrt{3}\right)-16}{2\cdot 5\cdot \sqrt{25-12\sqrt{3}}}=\frac{17-6\sqrt{3}}{5\sqrt{25-12\sqrt{3}}}.\)