算數函數,求最大值.
題目:
設 \(D=\left\{n\in N, n\neq 3\right\}\),函數 \(f: D\rightarrow R\),定義為 \(\displaystyle f(n)=\frac{5n^2-6n-15}{n^2-2n-3}\),
若已知 \(f(n_0)\geq f(n),\;\forall n\in D\),則 \(n_0=?\)
解答:
\(\displaystyle f(n)=\frac{5n^2-6n-15}{n^2-2n-3}=5+3\cdot\frac{1}{n-3}+\frac{1}{n+1}\)
對任意 \(m>n>3\),
恆有 \(\displaystyle m-3>n-3>0\Rightarrow \frac{1}{m-3}<\frac{1}{n-3}\),
且 \(\displaystyle m+1>n+1>0\Rightarrow \frac{1}{m+1}<\frac{1}{n+1}\),
可得,\(f(m)<f(n)\),
因此,比較 \(\displaystyle f(1)=4,\;f(2)=\frac{7}{3},\;f(4)=\frac{41}{5}\),即可得此函數 \(f(n)\) 在 \(n=4\) 之時,有最大值。
亦即,依題意之 \(n_0=4.\)