1、將與\(105\)互質之所有正整數由小到大排成一數列,求此數列第\(1000\)項之值。
解答
\(105 = 3 \times 5 \times 7\),1至105的正整數中,和3互質,和5互質,和7互質的一共有48個。
\(105 \times \left( {1 - \frac{1}{3}} \right) \times \left( {1 - \frac{1}{5}} \right) \times \left( {1 - \frac{1}{7}} \right) = 48\)
把1至105的正整數,剩下的48個分類。
\(105k + 1,105k + 2,105k + 4,105k + 8, \cdots ,105k + 104\),共48類 \(k = 0,1,2,3,4,5,6, \cdots \)
\(1000 = 48 \times 20 + 40\),代表數了20輪迴後,再40個,就是第1000項。
因此進入第21輪迴,此時 \(k\)要帶入 20 計算。
\(105 \times 20 = 2100\), 104是第48類,往回退8類,就是 \(105k+86\)
所以第1000項是2186
[ 本帖最後由 shingjay176 於 2014-4-24 08:48 PM 編輯 ]