7.
\(x,y\in \mathbb{Z}\),試問\(\displaystyle \Bigg\vert\;\frac{x}{3}+\frac{y}{4}-\frac{114}{5}\Bigg\vert\;\)之最小值為何?
(A)\(\displaystyle \frac{1}{15}\) (B)\(\displaystyle \frac{1}{20}\) (C)\(\displaystyle \frac{1}{30}\) (D)\(\displaystyle \frac{1}{60}\)
9.
試計算\(\displaystyle \lim_{n\to \infty}\left(\frac{2^3+1}{2^3-1}\times\frac{3^3+1}{3^3-1}\times\frac{4^3+1}{4^3-1}\times\ldots\frac{n^3+1}{n^3-1}\right)=\)?
(A)0 (B)1 (C)\(\displaystyle \frac{3}{2}\) (D)\(\displaystyle \frac{9}{4}\)
給定數列\(\langle\;a_n\rangle\;=\cases{a_1=\frac{1}{2}\cr a_n=3a_{n-1}-2(-1)^{n-1},n\ge 2}\),試問\(a_{114}\)是幾位數?
(A)54 (B)55 (C)56 (D)57
15.
三次曲線\(y=x^3+ax^2+1\),若由原點可作三條相異切線,試問實數\(a\)的值可以是下列何者?
(A)\(\pi\) (B)\(\sqrt{2025}\) (C)\(log114\) (D)\(\displaystyle \frac{2025}{114}\)
類似問題,
https://math.pro/db/viewthread.php?tid=1644&page=2#pid8567
9.
試計算\(1!\times1+2!\times 2+\ldots+114!\times114\)除以2025的餘數。
我的教甄準備之路 裂項相消,
https://math.pro/db/viewthread.php?tid=661&page=2#pid1678