3.
假設\(A\)為非空的有限集合,規定\(S(A)\)表示\(A\)中所有元素的和;例如:\(S(\{\;1,3,7\}\;)=1+3+7+11\)。考慮集合\(\{\;1,2,3,4,5,6,7,8\}\;\)中的每個非空子集合\(A\),試求所有這樣\(S(A)\)的總和
。
(2013TRML個人賽,連結有解答
https://math.pro/db/viewthread.php?tid=1733&page=1#pid9168)
4.
設\(z\)為複數,且\(|\;z|\;=1\),已知\(|\;z^2-z+1|\;\)的最大值為\(M\),最小值為\(m\),求\(M+m=\)
。
8.
\(\triangle ABC\)中,\(\overline{AB}=5\),\(\overline{AC}=3\),過\(A\)點在直線\(BC\)上的垂足為\(H\)。若(向量)\(\displaystyle \overline{AH}=-\frac{1}{2}\overline{AB}+\frac{3}{2}\overline{AC}\),試求\(\triangle ABC\)的外接圓面積
。
(110學年度第2學期中山大學雙週一題第1題,
https://www.math.nsysu.edu.tw/~problem/2022s/2022s1.pdf)
9.
試求\(sin^2 50^\circ+sin^2 70^\circ-sin^2 80^\circ\)的值
。
11.
設\(m\)為實數,已知四次方程式\(3x^4-4mx^3+1=0\)無實根,求\(m\)的範圍為
。
(91指考數甲,聯結有解答
https://math.pro/db/viewthread.php?tid=785&page=1#pid1443)
二、計算題
1.
試求\(\displaystyle \sqrt{10-6cos\theta}+\frac{1}{4}\sqrt{34-24\sqrt{2}sin\theta}+\sqrt{19-2\sqrt{2}cos\theta-8sin\theta}\)的最小值。