回覆 13# enlighten0626 的帖子
第 16 題
設\(A(-1,1,3)\)、\(B(1,2,3)\)、\(C(2,0,4)\)、\(D(1,1,1)\),若平面\(E\)包含\(\overline{AB}\),且將四面體\(ABCD\)切成兩部分,當平面\(E\)與四面體所截出的截面\(PAB\)的面積有最小值,點\(P\)的坐標為
[解答]
截面積最小,表示 CD 上的點 P 到 AB 的距離最小
設 PQ 垂直 AB 於 Q
P(2 + t,-t,4 + 3t)、Q(1 + 2s,2 + s,3)
PQ^2 = (t - 2s + 1)^2 + (-t - s - 2)^2 + (3t + 1)^2
= 11t^2 - 2st + 5s^2 + 12t + 6
= 5(s - t/5)^2 + (54/5)(t + 5/9)^2 + 8/3
t = -5/9,s = -1/9 時,PQ 有最小值
此時 P(13/9,5/9,7/3)