發新話題
打印

三角函數

推到噗浪
推到臉書

三角函數

請教一題做法:
已知0≤a≤2pi,0≤b≤2pi,若cos(a+b)=cos(a)+cos(b),請問cos(a)的最大值為何?  答案是√3-1

TOP

109台中一中考過
右邊展開得:\(\displaystyle cosAcosB-sinAsinB=cosA+cosB\)
移項整理得 \(\displaystyle (cosA-1)cosB-sinAsinB=cosA\)
由柯西不等式得知
\(\displaystyle cosA \leq \sqrt{2-2cosA}\)
整理得\(\displaystyle cos^2A+2cosA-2\leq0\)
所以\(\displaystyle cosA\leq \sqrt{3}-1\)

TOP

發新話題