發新話題
打印

110彰化女中

\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{x^2}{n}\sqrt{\frac{2kx^2}{n}-1}\)
=\(\displaystyle \frac{1}{2}x^2 \lim _{n\to \infty}\sum_{k=1}^n \frac{2}{n}\sqrt{\frac{2kx^2}{n}-1}\)
=\(\displaystyle \frac{1}{2}x^2 \int_{0}^{2}\sqrt{ux^2-1}\ du =\frac{1}{3}(ux^2-1)^{\frac{3}{2}}|_0^2\)

最後的下限怪怪的,難不成要瑕積分??
結果論來看\(\displaystyle f(x)=\frac{1}{3}(2x^2-1)^{\frac{3}{2}}\)
微分得\(\displaystyle f'(x)=\frac{1}{2}\sqrt{2x^2-1}\cdot 4x\)
所求\(f'(5)=70\)

想請問有沒有正規的作法

TOP

回復 11# satsuki931000 的帖子

填充 15.有考試的話,可以試試申請疑義吧

一般沒特別註明,應該都是談實函數。
除非接受複數函數值或複變函數,分實部、虛部定義積分。不過這一般應該是在複變、複分析的課程了。
網頁方程式編輯 imatheq

TOP

引用:
原帖由 satsuki931000 於 2021-5-2 16:22 發表
\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{x^2}{n}\sqrt{\frac{2kx^2}{n}-1}\)
=\(\displaystyle \frac{1}{2}x^2 \lim _{n\to \infty}\sum_{k=1}^n \frac{2}{n}\sqrt{\frac{2kx^2}{n}-1}\)
=\(\display ...
用寸絲推薦的網站算的(這網站太厲害了)
為什麼會使用它呢?
因為110板橋高中那題跟這題,我用Mathematica12居然算不出來.....
(Mathematica軟體對於這種黎曼和積分定義還要再加油!!)

附件

1619949639763.jpg (188.51 KB)

2021-5-2 18:01

1619949639763.jpg

TOP

回復 11# satsuki931000 的帖子

不知道這樣寫會不會有問題,然後存在的證明我沒想法了。

[ 本帖最後由 firzenf04 於 2021-5-3 12:17 編輯 ]

附件

110彰女填充15.png (31.6 KB)

2021-5-3 12:17

110彰女填充15.png

TOP

彰化女中已回復
填充第15題送分

TOP

填充4

附件

填充4.png (18.91 KB)

2021-5-3 20:13

填充4.png

TOP

回復 5# studentJ 的帖子

將10拆成若干個正整數的和有\(2^9=512\)種
走10步:1種
走9步:2種
走8步:5種
走7步:12種
共\(512-20=492\)

謝謝鋼琴老師,已修正

TOP

可以請教第五題嗎?我只會一個個數

TOP

回復 19# PDEMAN 的帖子

第 5 題
做苦工的題目,考試看到這種題目一定要跳啊

2|x| + |y| = 20
菱形四個頂點 A(10,0),B(0,20),C(-10,0),D(0,-20)

x^2 + 4y^2 =20
橢圓四個頂點 D(2√5,0),E(-2√5,0),F(0,√5),G(0,-√5)

區域 D = 菱形 - 橢圓

先算第一象限的格子點
x = 1,y = 3 ~ 18,計 16 點
x = 2,y = 2 ~ 16,計 15 點
x = 3,y = 2 ~ 14,計 13 點
x = 4,y = 1 ~ 12,計 12 點
x = 5,y = 1 ~ 10,計 10 點
x = 6,y = 1 ~ 8,計 8 點
x = 7,y = 1 ~ 6,計 6 點
x = 8,y = 1 ~ 4,計 4 點
x = 9,y = 1 ~ 2,計 2 點
以上計 86 點

x 軸上的點有 6 * 2 = 12 個
y 軸上的點有 18 * 2 = 36 個

所求 = 86 * 4 + 12 + 36 = 392

TOP

回復 19# thepiano 的帖子

感謝鋼琴老師

TOP

發新話題