發新話題
打印

97楊梅高中

97楊梅高中

已知\(a,b,c \in R^{+} \) 三數不全相等
且\(abc=1 \)
試證\( \displaystyle \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c} > \sqrt{a}+\sqrt{b}+\sqrt{c} \)

110.8.15版主補充
將文章標題改為97楊梅高中

附件

97楊梅高中.pdf (132.32 KB)

2021-8-15 06:42, 下載次數: 3333

TOP

回復 1# satsuki931000 的帖子

(97楊梅高中)
算幾不等式:
\( \displaystyle \frac{ \frac{1}{a} + \frac{1}{b} }{2} \geq \sqrt{ \frac{1}{ab} } = \sqrt{c} \),\( \displaystyle \frac{ \frac{1}{b} + \frac{1}{c} }{2} \geq \sqrt{ \frac{1}{bc} } = \sqrt{a} \),\( \displaystyle \frac{ \frac{1}{c} + \frac{1}{a} }{2} \geq \sqrt{ \frac{1}{ca} } = \sqrt{b} \)

三式相加:\( \displaystyle \frac{1}{a} + \frac{1}{b} + \frac{1}{c} > \sqrt{a} + \sqrt{b} + \sqrt{c} \)  (因為三數不全相等,等號不成立)

TOP

回復 2# koeagle 的帖子

簡潔有力 謝謝您

TOP

發新話題