計算3
\(\langle\;F_n\rangle\;\)為費氏數列,即\(F_1=F_2=1\)且\(F_{n+2}=F_{n+1}+F_n\)在\(n \in N\)均成立,令\(\displaystyle \lambda_n=\frac{F_{2n}}{F_{2n-1}}\)。
(1)證明\(\lambda_{n+1}=2-\frac{1}{1+\lambda_n}\)
(2)證明\(\langle\; \lambda_n \rangle\;\)為遞增數列
(3)證明\(\lambda_n\)收斂
(4)求\(\langle\;\lambda_n \rangle\;\)之極限
[解答]
(1)考慮\(\displaystyle F_{2n+2}=F_{2n+1}+F_{2n} \)
\(\displaystyle \lambda_{n+1}=1+\frac{F_{2n}}{F_{2n+1}} =2-(1-\frac{F_{2n}}{F_{2n+1}}) \)
\(\displaystyle \lambda_{n+1}=2-(\frac{F_{2n+1}-F_{2n}}{F_{2n+1}})=2-(\frac{F_{2n-1}}{F_{2n+1}})\
=2-\frac{1}{\frac{F_{2n+1}}{F_{2n-1}}}=2-\frac{1}{\frac{F_{2n}+F_{2n-1}}{F_{2n-1}}}\
=2-\frac{1}{1+\lambda_{n}} \)
(2)\(\displaystyle \lambda_{1}=1, \lambda_{2}=\frac{3}{2}, \lambda_{3}=\frac{8}{5} \)
設\(n=k \)時,\(\displaystyle \lambda_{k+1}> \lambda_{k} \)
當\(n=k+1 \)時,\(\displaystyle \lambda_{k+2}=2-\frac{1}{1+\lambda_{k+1}}>2-\frac{1}{1+\lambda_{k}}=\lambda_{k+1} \)
根據數學歸納法
\(\displaystyle {\lambda_{n}} \)遞增
(3)\(\displaystyle \lambda_{1}=1<2, \lambda_{2}=\frac{3}{2}<2, \lambda_{3}=\frac{8}{5}<2 \)
設\(\displaystyle n=1,2,...k, \lambda_{n}<2 \)皆成立
此時可知\(\displaystyle \lambda_{k+1}=2-\frac{1}{1+\lambda_{k}}<2-\frac{1}{3}=\frac{5}{3}<2 \)
當\(n=k+1 \)時
\(\displaystyle \lambda_{k+2}=2-\frac{1}{1+\lambda_{k+1}}<2-\frac{1}{3}=\frac{5}{3}<2 \)
根據數學歸納法
\(\displaystyle {\lambda_{n}} \)有界
(4)因為\(\displaystyle {\lambda_{n}} \)遞增且有界,所以收斂,令其收斂值為\(\alpha \)
可得 \(\displaystyle \alpha=2-(\frac{1}{1+\alpha}) \)
解得\(\displaystyle \alpha = \frac{1+\sqrt{5}}{2} \)