12 12
發新話題
打印

圓外兩點對圓上點距離乘積

圓外兩點對圓上點距離乘積

已知點\(P\)在圓\(x^2+y^2=4\)上,設點\(A(3,\sqrt{23}),B(3,-\sqrt{23})\),求\(\overline{PA}\cdot \overline{PB}\)的最大值與最小值。

TOP

後記,感謝鋼琴老師和Lopez大糾正,原帖已做更改
頭一次上傳動畫檔 操作有疏失還請見諒



[ 本帖最後由 satsuki931000 於 2020-10-31 20:01 編輯 ]

附件

15.JPG (38.96 KB)

2020-10-31 20:01

15.JPG

TOP

回復 2# satsuki931000 的帖子

最小值不會出現在\(\left( x,y \right)=\left( 2,0 \right)\),也就是24

小弟算的最小值出現在\(\left( x,y \right)=\left( \frac{27}{16},\pm \frac{\sqrt{295}}{16} \right)\)
此時最小值是\(\frac{7}{2}\sqrt{46}\)
方法繁瑣就不獻醜了

小弟的電腦看不到您的動畫

TOP

回復 2# satsuki931000 的帖子

(-1,0) , (1,0) 好像都不在 x² + y² = 4 上 ??

TOP

感謝兩位老師的訂正
不過最小值除了微分法之外有沒有其他作法

小弟原先的方法錯誤在哪

TOP

回復 5# satsuki931000 的帖子

化簡到最後,根號裡面是一個二次函數,可以配方求出最小值和最大值,不須微分

您的算式錯誤之處在算幾不等式中,不等號要有一邊是定值

TOP

回復 1# larson 的帖子

TOP

回復 6# thepiano 的帖子

謝謝鋼琴老師的指教

TOP

謝謝大家的回覆

本以為很對稱可以有基本的幾何定理可用,但都無對應的幾何定理,謝謝老師們的回覆。

TOP

為何轉複數之後答案不同?

如附件,是哪一個推論有問題,為何轉複數之後答案不同?

令\(\omega_1=3+\sqrt{23}i,\omega_2=3-\sqrt{23}i\)
則原題改為求:已知\(|\;\omega|\;=4\),求\(|\;\omega-\omega_2|\; |\;\omega-\omega_2|\;=|\;\omega^2-6\omega+32|\;\)的最小值
答案算出來是\(2\sqrt{46}\)

TOP

 12 12
發新話題