發新話題
打印

109大理高中代理筆試

推到噗浪
推到臉書

109大理高中代理筆試

想請教第三題的第三小題。謝謝~

能找到截面積為

\[f(t)=4t-\frac{8}{3}t^2 \]

所以在\[t=\frac{3}{4}\]時

\[f(\frac{3}{4})=\frac{2}{3}\]有最大值

\[\lambda =\frac{1}{3}\]

再來第三小題就想不出來了~

能否請大大們賜教,拜託了,謝謝~

[ 本帖最後由 mojary 於 2020-7-9 09:01 編輯 ]

附件

109大理高中代理筆試.pdf (116.28 KB)

2020-7-6 17:05, 下載次數: 722

TOP

容許小弟補個圖

請賜教

[ 本帖最後由 mojary 於 2020-7-9 12:31 編輯 ]

附件

109大理高中代理填3.png (108.5 KB)

2020-7-9 12:31

109大理高中代理-填3

109大理高中代理填3.png

TOP

引用:
原帖由 mojary 於 2020-7-9 12:28 發表
請賜教
把梯形轉換成兩個相似三角形相減, 面積與邊長平方成正比, 計算下底平方-上底平方即可. 第三小題也是一樣的做法.

TOP

回復 3# galois5 的帖子

聽懂了~感恩~

TOP

抱歉
看了說明我還是不知如何處理
第二題用梯形我能理解
但用面積平方比得到的結果不是比例嗎

還有第三題我題目也不太懂
P點不是本來就沒有平面ABC上嗎
為什麼是變更呢

TOP

截面積為三角形或梯形,其中過P點的是三角形中最大的(再過去就變梯形)

然後就是設邊長比t,去推梯形必定為過P點三角形的f(t)倍
千金難買早知道,萬般無奈想不到

TOP

發新話題