\(\displaystyle a_n = (n+1)^{\left(1 + \frac{1}{(n+1)\log(n+1)}\right)}\)則
\(\displaystyle \frac{a_n}{n+1} = (n+1)^{\frac{1}{(n+1)\log(n+1)}} < 1.6\)
取對數得\(\displaystyle \frac{1}{(n+1)\log(n+1)} \cdot \log(n+1) < \log(1.6)\)
\(\displaystyle \frac{1}{n+1} < \log(1.6)=0.204\)
\(n\)取4