回復 9# kyoyo0222 的帖子
9.
若\(x^2-8\)(x^2-9)-a=0的四根為相異的非零實數,且四根成等差數列,求\(a\)之值。
[解答]
最後一題
之前計算錯誤,難怪算不出來,修正如下:
\(\begin{align}
& \left( {{x}^{2}}-8 \right)\left( {{x}^{2}}-9 \right)-a=0 \\
& {{x}^{4}}-17{{x}^{2}}+\left( 72-a \right)=0 \\
\end{align}\)
其四根成等差數列,且其和為0
可設四根為\(-3d,-d,d,3d\)
兩兩乘積和\(=3{{d}^{2}}+\left( -3{{d}^{2}} \right)+\left( -9{{d}^{2}} \right)+\left( -{{d}^{2}} \right)+\left( -3{{d}^{2}} \right)+3{{d}^{2}}=-17\)
\(\begin{align}
& {{d}^{2}}=\frac{17}{10} \\
& 72-a=\left( -3d \right)\times \left( -d \right)\times d\times 3d=9{{d}^{4}}=\frac{2601}{100} \\
& a=\frac{4599}{100} \\
\end{align}\)