補個其他幾題的不同想法
\( \displaystyle 團體賽第2題,令{n^2} = {(a + b)^2} = {a^2} + 2ab + {b^2},a,b \in N \)
\( \displaystyle 這裡雖然看似有不只一組解,事實上也可觀察只要代入任意數,例如代入a = {2^2},b就會變成定值\)
\( \displaystyle {({2^2})^2} + 2 \times {2^2} \times {2^4} + {({2^4})^2} = {({2^2} + {2^4})^2},(m,n) = (8,20),m + n = 28\)
\( \displaystyle 團體賽第10題,\Delta BCD,\Delta BCP,\Delta BCA都是以\overline {BC}為底的三角形,因為P是\overline {AD}的中點,一個25,一個23,中間的答案當然就是24 \)