發新話題
打印

107政大附中代理

107政大附中代理

2018.06.30 筆試

附件

107政大附中代理.pdf (421.63 KB)

2018-7-11 21:48, 下載次數: 7940

TOP

6.
\(x,y \in C\),試解聯立方程式\( \cases{x+y=5 \cr x^4+y^4=97} \)。
(99高雄市高中聯招,https://math.pro/db/viewthread.php?tid=975&page=3#pid3447)

7.
若\(L_1\)與\(L_2\)為拋物線上\(\Gamma\)上兩條互相垂直的切線,其交點為\(P\)。試證明:\(P\)點一定落再拋物線\(\Gamma\)的準線上。
https://math.pro/db/viewthread.php?tid=1789&page=1#pid9519

TOP

回復 1# Superconan 的帖子

第三題應該是:
\(tanA+tanB+tanC=tanA \cdot tanB \cdot tanC\)

TOP

4.
\(I\)為等腰三角形\(ABC\)的內心\(\overline{AB}=\overline{AC}\),\(\overline{ID}\bot \overline{BC}\)、\(\overline{IE}\bot \overline{AC}\)、\(\overline{IF}\bot \overline{AB}\)。若\(\Delta AFE\)的面積等於\(\Delta FBD\)與\(\Delta EDC\)的面積和,求\(\displaystyle \frac{\overline{AF}}{\overline{BF}}=\)?

想請教第四題,謝謝!

TOP

回復 4# beaglewu 的帖子

第 4 題
\(\begin{align}
  & \overline{AF}=x,\overline{BF}=1 \\
& \Delta AFG=\Delta FBD=a \\
& \frac{\Delta AFG}{\Delta DFG}=\frac{\overline{AG}}{\overline{DG}}=\frac{\overline{AF}}{\overline{BF}}=x \\
& \Delta DFG=\frac{a}{x} \\
& \frac{\Delta AFD}{\Delta BFD}=\frac{\overline{AF}}{\overline{BF}} \\
& \frac{a+\frac{a}{x}}{a}=\frac{x}{1} \\
& 1+\frac{1}{x}=x \\
& \frac{\overline{AF}}{\overline{BF}}\text{=}x=\frac{1+\sqrt{5}}{2} \\
\end{align}\)

附件

20190131_2.jpg (24.02 KB)

2019-1-31 22:49

20190131_2.jpg

TOP

回復 5# thepiano 的帖子

謝謝 thepiano老師!

TOP

發新話題