試算了一下,參考看看
\(\displaystyle \frac{a_{k+1}^2}{a_{k}\cdot a_{k+2}}=\frac{(a_k+d)^2}{(a_k)(a_k+2d)}=\frac{a_k^2+2a_k d+d^2}{a_k^2+2a_k d}=1+\frac{d^2}{a_k^2+2a_k d}=1+\frac{d^2}{(a_k)(a_k+2d)}=1+d^2 \times \frac{1}{2}\left(\frac{1}{a_k}-\frac{1}{a_k+2d}\right)\)
\(\displaystyle \sum_{k=1}^9 \frac{a_{k+1}^2}{a_k \cdot a_{k+2}}=\sum_{k=1}^9 \left[1+d^2 \times \frac{1}{2}\left(\frac{1}{a_k}-\frac{1}{a_k+2d}\right) \right]=\sum_{k=1}^9 1+d^2 \times \frac{1}{2}\sum_{k=1}^9 \left(\frac{1}{a_k}-\frac{1}{a_k+2d}\right)\)
\(\displaystyle =9+(\sqrt{2})^2\times \frac{1}{2}\left[\left(\frac{1}{a_1}-\frac{1}{a_3}\right)+\left(\frac{1}{a_2}-\frac{1}{a_4}\right)+\ldots+\left(\frac{1}{a_9}-\frac{1}{a_{11}}\right)\right]
=9+\left(\frac{1}{a_1}+\frac{1}{a_2}-\frac{1}{a_{10}}-\frac{1}{a_{11}}\right)=9+\frac{\sqrt{2}}{2}\)
∵\(S_{11}=44\sqrt{5},d=\sqrt{2}\)
∴\(a_1=4\sqrt{5}-5\sqrt{2},a_2=4\sqrt{5}-4\sqrt{2},a_{10}=4\sqrt{5}+4\sqrt{2},a_{11}=4\sqrt{5}+5\sqrt{2}\)
\(\displaystyle \left(\frac{1}{a_1}+\frac{1}{a_2}-\frac{1}{a_{10}}-\frac{1}{a_{11}}\right)=\left(\frac{1}{a_1}-\frac{1}{a_{11}}\right)+\left(\frac{1}{a_2}-\frac{1}{a_{10}}\right)=\frac{a_{11}-a_1}{a_1\times a_{11}}+\frac{a_{10}-a_2}{a_2 \times a_{10}}\)
\(\displaystyle =\frac{(4\sqrt{5}+5\sqrt{2})-(4\sqrt{5}-5\sqrt{2})}{(4\sqrt{5}-5\sqrt{2})\times(4\sqrt{5}+5\sqrt{2})}+\frac{(4\sqrt{5}+4\sqrt{2})-(4\sqrt{5}-4\sqrt{2})}{(4\sqrt{5}-4\sqrt{2})\times(4\sqrt{5}+4\sqrt{2})}=\frac{10\sqrt{2}}{80-50}+\frac{8\sqrt{2}}{80-32}=\left(\frac{10}{30}+\frac{8}{48}\right)\sqrt{2}=\frac{\sqrt{2}}{2}\)