第十題
已知\(x\)是自然數,若將分數\(\displaystyle \frac{x}{61}\)化為小數,得\(\displaystyle \frac{x}{61}=0.d_1d_2d_3\ldots\),其中\(d_{37}=2\),\(d_{65}=3\),則數對\((x,d_{36})=\) 。
[解答]
每一位的數字是多少,取決於前一位的餘數,所以
\( \displaystyle a_{37}=2 \) 表示前一位除以 \( 61 \) 的餘數為 \( 13,14,15,16,17,18 \)
以下都做除以 \( 61 \)的餘數
\( \displaystyle 10^{36}x=13,14,15,16,17,18 \)
同理 \( \displaystyle 10^{64}x=19,20,21,22,23,24 \)
\( \displaystyle 10^{28}=(10^4)^7=(-4)^7=-64^2 \times 4=-36=25 \)
\( \displaystyle 25 \times (13,14,15,16,17,18)=(20,45,9,34,59,23) \)
所以可能的解有 \( (13,20) \) 以及 \( (18,23) \)
\( \displaystyle 10^{36}=(10^4)^9=(-4)^9=-(4^3)^3=-3^3=-27=34 \)
若 \( \displaystyle 10^{36}x=(13,18) \Rightarrow x=(56,40) and 10^{35}x=(44,14) \)
故 \( \displaystyle a_{36}=(7,2) \)