想問第二題有沒有比較簡易的算法,套了好多東西才解出跟eyeready老師一樣的答案
不失一般性,假設P在第一象限,令\( \displaystyle P(\sec \theta ,\sqrt 3 \tan \theta ) \),\( \displaystyle (\sec \theta - 2,\sqrt 3 \tan \theta ) \cdot (\sec \theta + 2,\sqrt 3 \tan \theta ) = 0 \)解得\( \displaystyle P(\frac{{\sqrt 7 }}{2},\frac{3}{2}) \)
\( \displaystyle \frac{1}{{\overline {P{F_2}} }} + \frac{1}{{\overline {Q{F_2}} }} = \frac{4}{K},K = \frac{{2{b^2}}}{a} = 6 \)算出\( \displaystyle \overline {Q{F_2}} = 3(3 + \sqrt 7 ) \)
三角形面積為\( \displaystyle \frac{1}{2} \times (\sqrt 7 + 1) \times (\sqrt 7 - 1 + 3(3 + \sqrt 7 )) = 18 + 6\sqrt 7 \),\( \displaystyle s = \sqrt 7 - 1 + 3(3 + \sqrt 7 ) + 2 = 10 + 4\sqrt 7 \)
故所求為\( \displaystyle \frac{{18 + 6\sqrt 7 }}{{10 + 4\sqrt 7 }} = - 1 + \sqrt 7 \)
[ 本帖最後由 BambooLotus 於 2018-3-14 17:56 編輯 ]