令 \(\alpha=3+\sqrt{7}\),\(\beta=3-\sqrt{7}\)
\(\Rightarrow \alpha+\beta=6, \alpha^2+\beta^2=32\) 都是偶數,
另由根與係數關係式,可知 \(\alpha, \beta\) 為 \(x^2-6x+2=0\) 之兩根,
\(\Rightarrow \left(\alpha^n+\beta^n\right)=6\left(\alpha^{n-1}+\beta^{n-1}\right)-2\left(\alpha^{n-2}+\beta^{n-2}\right),\,\forall n\geq3,n\in\mathbb{N}\),
\(\Rightarrow\) 對任意 \(n\in\mathbb{N}\),\(\left(\alpha^n+\beta^n\right)\) 恆為偶數,
且由 \(\alpha^n = \left(\alpha^n+\beta^n-1\right) + \left(1-\beta^n\right)\)
因為 \(0<\beta<1\),所以 \(0<\beta^n<1\Rightarrow 0<\left(1-\beta^n\right)<1\) ,
且 \(\left(\alpha^n+\beta^n-1\right)\in\mathbb{Z}\)
可知 \(\left[\alpha^n\right] = \left(\alpha^n+\beta^n-1\right)\) 恆為奇數。
註:或由二項式定理直接展開並相加,亦可知 \(\left(\alpha^n+\beta^n\right)\) 恆為偶數。