6.
若一元四次多項式方程式\(x^4-12x^3+46x^2-60x+11=0\)的四個根分別為\(a\)、\(b\)、\(c\)、\(d\),且方程式\( \displaystyle \frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}+\frac{1}{x-d}=0 \)的三個實根由小至大分別為\(x_1\)、\(x_2\)、\(x_3\),則有序數組\( \left( x_1,x_2,x_3 \right)= \)?
[解答]
\(x^4-12x^3+46x^2-60x+11=(x-a)(x-b)(x-c)(x-d)\)
兩邊微分
\(4x^3-36x^2+92x-60=(x-a)(x-b)(x-c)+(x-a)(x-b)(x-d)+(x-a)(x-c)(x-d)+(x-b)(x-c)(x-d)\)
\(\displaystyle \frac{1}{x-a}+\frac{1}{x-b}+\frac{1}{x-c}+\frac{1}{x-d}=0\)
\((x-a)(x-b)(x-c)+(x-a)(x-b)(x-d)+(x-a)(x-c)(x-d)+(x-b)(x-c)(x-d)=0\)
\(x_1,x_2,x_3\)就是\(4x^3-36x^2+92x-60=0\)之三根
10.
若\( \alpha_1,\alpha_2, \ldots ,\alpha_{105} \)為\(x^{105}+2x^{104}+3=0\)的複數根,則\( (\alpha_1^2+1)(\alpha_2^2+1)\ldots(\alpha_{105}^2+1)= \)?
[解答]
\(f(x)=x^{105}+2x^{104}+3=(x-\alpha_1)(x-\alpha_2)(x-\alpha_3)\ldots(x-\alpha_{105})\)
\((i-\alpha_k)(-i-\alpha_k)=(\alpha_k^2+1)\)
所求\(=f(i)f(-i)=(i+2+3)(-i+2+3)=26\)
附件
-
20160523_2.jpg
(12.82 KB)
-
2016-5-23 09:37
-
20160523.jpg
(84.03 KB)
-
2016-5-23 09:39