發新話題
打印

104高雄餐旅附中

104高雄餐旅附中

以下資料供以後的考生參考:

初試最低錄取分數57分
80,64,64,64,62,60,59,59,57,57

其他
50~56分 10人
40~49分 16人
30~39分 12人
20~29分  6人
10~19分  5人
0~ 9分   0人
缺考   0人

共計 59 人

附件

104高餐大附中.pdf (251.66 KB)

2015-8-18 09:05, 下載次數: 8471

高雄餐旅附中

104高餐大附中筆試成績.pdf (167.41 KB)

2015-8-18 09:05, 下載次數: 7642

TOP

回復 1# leo790124 的帖子

請益填4和計算2

填充4
已知\( \cases{x^3-xyz=2 \cr y^3-xyz=6 \cr z^3-xyz=20} \),其解\( (x,y,z)=(a,b,c) \),試求\( a^3+b^3+c^3 \)的最大值

計算2
已知\( a、b、c、d \)為正實數,且\( a>b \),若\( a^2+ab+b^2=c^2-cd+d^2=1 \),\( \displaystyle ac+bd=\frac{2}{\sqrt{3}} \),試求\( 21 \cdot (a^2+b^2+c^2+d^2) \)。

TOP

回復 2# leo790124 的帖子

TOP

回復 3# thepiano 的帖子

謝謝老師
計算2
我的想法是把a,b,c,d看成園內接四邊形的四個邊長
恰好有60度和120的對角互補
對角線有一條是1
另一條ac+bd正好可用托勒密算出另一條對角線長

可是這樣跟所求四邊平方合的關係是什麼就想不到了><
請眾老師提點!!
謝謝

TOP

回復 4# leo790124 的帖子

之前臉書上有朋友問類似的問題:



相關討論串(要加入該FB社團才看的到):https://www.facebook.com/groups/ ... nk/447586282090765/

多喝水。

TOP

回復 5# weiye 的帖子

謝謝老師!!!!!!!!!
我看到那個外國人的解法了哈
差了最後一步

TOP

回復 4# leo790124 的帖子

個人覺得 leo 老師的構思非常精巧,是可行的。論證如下,請各位高明看看是否成立。

如上圖,AC 是圓 O 的直徑,BD 為一弦,則 a² + b² + c² + d² = 2*AC² (半圓含直角),與 BD 之長度,位置無關。
(若 AC 與 BD 皆為非直徑的弦,則即使 AC 與 BD 長度固定,a² + b² + c² + d² 並不是定值)

因若 a, b, c > 0,且滿足 a² + b² - 2ab*cosθ = c² (0 < θ < 180°),則 a, b, c 必可構成一三角形,且 a, b 邊之夾角為 θ ;
所以我們可以不失一般性地,把題目條件構成如下圖,使 BD = 1,∠BCD = 120°,∠BAD = 60°;則 A, B, C, D 共圓 (O 是圓心),且該圓半徑 = 1/√3 (∠BOD = 120°)。

由托勒密定理,AC*BD = ac + bd ⇒ AC = 2/√3,故 AC 是直徑。則依上文紅字部分所述, a² + b² + c² + d² = 2*AC² = 8/3

TOP

請問有這份試卷的答案嗎?
我記得當時有公布可是我檔案不見了
懇請有檔案的大大們提供 感激不盡

TOP

發新話題