引用:
原帖由 瓜農自足 於 2015-4-21 04:03 PM 發表
想請教#4:算得 |1/1+2p|
第4題:
設\(tan \alpha\),\( tan \beta \)為方程式\(x^2+(2p-1)x+4p^2=0\)之二根,若\( \displaystyle \lim_{n \to \infty}\sum_{k=0}^{n}tan^k(\alpha+\beta) \)之值存在,則\(p\)之範圍為
。
[提示]
還有方程式的判別式可以用
第6題:
圓心在\(y\)軸上,且與雙曲線\(\displaystyle x^2-\frac{y^2}{4}=1\)及直線\(y=4\)均相切的圓之半徑為
。
[提示]
圓心假設\((0,b)\),圓方程式\(x^2+(y-b)^=(4-b)^2\)帶到雙曲線得到\(y\)的一個方程式
然後因為圓和雙曲線會有兩個切點(而且是對\(y\)軸對稱),所以切點\(y\)座標只有一個,所以把上述算出來的\(y\)的方程式用判別式\(=0\)解\(b\)
第7題:
設\(2a+2b+2c+2d=11\),\(2(a+b)(c+d)=5\),則\(log(a+b)^2 log(c^2-d^2)-log(a+b)log(c-d)^2\)之值為
。
(計算至小數第四位,第五位以下無條件捨去,\(log2=0.301,log3=0.4771\))
[提示]
所求化簡一下可以得到\(2log(a+b)log(c+d)\)
假設\(A=a+b, B=c+d\),用題目給的條件解出\(A,B\)
11題:
滿足\(x+y+z+w=xyzw\)的正整數\(x,y,z,w\)解有
組。
[提示]
考古題,把題目一字不漏的丟到google一下就找到了
18題:
設實係數多項式\(f(x)\)滿足\(\displaystyle x^2 f(x)=\frac{3}{5}x^5+\frac{1}{2}ax^4-\frac{1}{3}x^3+2 \int_0^x t f(t)dt\),\(f(0)=0\),若曲線\(y=f(x)\)與\(x\)軸所圍成的區域面積記為\(S(a)\),則\(S(a)\)之最小值為
。
[提示]
上一頁有我的想法可以看一下