回復 1# nanpolend 的帖子
26.
\(\Delta ABC\)中,\(M\)為\(\overline{BC}\)中點,今以\(M\)為圓心,\(\overline{MB}\)為半徑畫弧,分別交\(\overline{AB}\)、\(\overline{AC}\)於\(E\)、\(F\)兩點。若\(\angle A=70^{\circ}\),\(\overline{BC}=12\),則\(EF\)的弧長為何?
(A)\(\displaystyle \pi\) (B)\(\displaystyle \frac{4}{3}\pi\) (C)\(\displaystyle \frac{5}{3}\pi\) (D)\(2\pi\)
[解答]
設弧 EF = x 度
由於 BC 是圓 M 的直徑
故 (1/2)(180 - x) = 70
x = 40
......