\(a\cdot49^x+7^x+1>0\)
\(\displaystyle
\Leftrightarrow \left(\frac{1}{7^x}\right)^2+\left(\frac{1}{7^x}\right)+a>0
\)
令 \(\displaystyle t=\frac{1}{7^x}\),\(\displaystyle g(t)=t^2+t+a=\left(t+\frac{1}{2}\right)+a-\frac{1}{4}>0\)
因為 \(x<1\),所以 \(\displaystyle
t=\frac{1}{7^x}>\frac{1}{7}\)
依題述,可知 \(\displaystyle
g(t)>0, \forall t>\frac{1}{7}\)
因為 \(g(t)\) 當 \(\displaystyle t\geq-\frac{1}{2}\) 時,為嚴格遞增函數,
\(\displaystyle
\Rightarrow g(t)>g(\frac{1}{7})\geq0, \forall t>\frac{1}{7}\)
\(\displaystyle
\left(\frac{1}{7}\right)^2+\left(\frac{1}{7}\right)+a
\geq0\)
\(\displaystyle a\geq-\frac{8}{49}\)
註:感謝 thepiano 老師提醒答案漏掉等號。