發新話題
打印

請教一極值問題

推到噗浪
推到臉書

請教一極值問題

若已知一直角三角形,邊長和為12,求此三角型最大面積

我是假設a^2+b^2=c^2,由柯西不等式,(a^2+b^2)(1+1)>=(a+b)^2=(12-c)^2
即2*c^2>=c^2-24c+144,c=12+-12*sqrt(2), 這似乎不是好方法

在此請教板上高手,謝謝

TOP

12 = a + b + √(a^2 + b^2) ≧ 2√(ab) + √(2ab) = (2 + √2)√(ab)
ab/2 ≦ 108 - 72√2

TOP

回復 2# thepiano 的帖子

謝謝piano老師
再請教老師
若此三角形非直角三角形時
在甚麼條件下,面積會最大?
(以上那題似乎式等腰三角形條件下)
謝謝

[ 本帖最後由 arend 於 2013-12-19 12:30 AM 編輯 ]

TOP

回復 2# thepiano 的帖子

謝謝piano老師

TOP

引用:
原帖由 arend 於 2013-12-19 12:27 AM 發表
若此三角形非直角三角形時
在甚麼條件下,面積會最大?
正三角形

TOP

發新話題