回復 26# icetea 的帖子
填充 7.
若\(\displaystyle z_k=cos \frac{k\pi}{12}+i sin\frac{k\pi}{12}\),其中\(k=0,1,2,\ldots,11\);若\(\displaystyle \omega=\frac{1}{2}+\frac{\sqrt{3}}{2}i\),則\(\displaystyle \sum_{k=0}^{11}|\;z_k-\omega|\;^2=\) 。
\( |z|^2 = z \cdot \bar{z} \)
用力的展開,合併項得
所求 \( = 24 - \sum \bar{z_k} \omega - \sum z_k \bar{\omega} = 24 - 2Re \sum z_k \bar \omega \)
而 \( Re \sum z_k \bar \omega = 2 + \sqrt{\frac32} + \frac{3}{\sqrt{2}} +\sqrt{3} \) (硬算) 代入得
\( 20 - 2\sqrt{3} - 2\sqrt{6} -3\sqrt{2} \)