回復 1# palin 的帖子
\(\displaystyle \lim_{n\to\infty}\sum_{k=1}^n\frac{n}{k^2+n^2}\)
\(\displaystyle =\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\left(\frac{k}{n}\right)^2+1}\frac{1}{n}\)
\(\displaystyle =\int_0^1\frac{1}{x^2+1}dx\)
(令 \(x=\tan\theta\Rightarrow dx=\sec^2\theta d\theta\))
\(\displaystyle =\int_0^{\frac{\pi}{4}}\frac{1}{\tan^2\theta+1}\cdot\sec^2\theta d\theta\)
\(\displaystyle =\int_0^{\frac{\pi}{4}}1 d\theta\)
\(\displaystyle =\frac{\pi}{4}\)