今天剛好寫到這題,99公私立高中第三次模擬考選擇第7題,不過更狠,給的是
\(\displaystyle s_n=n^2a_n-n(n-1) \)
言歸正傳
基本上我們能解的遞迴數列只占非常少數,所以有時候都只是靈光一閃。
\(\displaystyle a_n=\frac{n-1}{n+1}a_{n-1}+\frac{2}{n+1} \)
\(\displaystyle (n+1)a_n=(n-1)a_{n-1}+2 \)
\(\displaystyle n(n+1)a_n=(n-1)na_{n-1}+2n \)
令\(\displaystyle b_n=n(n+1)a_n \)
則\(\displaystyle b_n=b_{n-1}+2n \)
而\(\displaystyle b_1=1 \)
這應該可以簡單解得
\(\displaystyle b_n=n^2+n-1 \)
所以
\(\displaystyle a_n=\frac{n^2+n-1}{n^2+n} \)