發新話題
打印

100中壢高中

推到噗浪
推到臉書

100中壢高中

想詢問填充5,9和12
算不出來
謝謝

[ 本帖最後由 johncai 於 2011-5-30 07:55 PM 編輯 ]

附件

中壢高中.rar (137.83 KB)

2011-5-30 19:36, 下載次數: 8461

TOP

填充5
如圖,因為對稱於原點,所以EF=GH且AB=CD
所以EF=AB/2
又ABEF共線,所以只要算x坐標或是y坐標就好
\(\displaystyle \frac{k+2}{3}-\frac{k-2}{3}=\frac{k}{2} \times \frac{1}{2} \)
\(\displaystyle k=\frac{16}{3} \)

感謝johncai的提醒

[ 本帖最後由 老王 於 2011-5-30 11:50 PM 編輯 ]

附件

100中壢高中填充5.jpg (19.4 KB)

2011-5-30 22:07

100中壢高中填充5.jpg

名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

填充12
考慮生成函數
\(\displaystyle x^{18}+3x^{17}+6x^{16}+10x^{15}+15x^{14}+21x^{13}+25x^{12}+27x^{11}+27x^{10}+25x^9+21x^8+15x^7+10x^6+6x^5+3x^4+x^3 \)
要分解成三個較低次數的多項式相乘,
直接猜測有一般的骰子
也就是有\(\displaystyle x^6+x^5+x^4+x^3+x^2+x \)這個因式
實際去試,得到生成函數為
\(\displaystyle (x^6+x^5+x^4+x^3+x^2+x)^3 \)
就確定可以選擇一個為一般的
剩下兩個,就再分解合併就是
\(\displaystyle (x^6+x^5+x^4+x^3+x^2+x)^2=x^2(x+1)^2(x^2+x+1)^2(x^2-x+1)^2 \)
要領是要分成兩組係數和為6的多項式
因為因式裡面有兩個係數和為2,兩個為3
所以各取一個湊在一起成為\(\displaystyle (x+1)(x^2+x+1)=x^3+2x^2+2x+1 \)
而那個x^2是要最後再分給那兩個多項式的
只剩下\(\displaystyle (x^2-x+1)^2 \)要分配
如果拿一個分配給剛剛挑出來的
那麼就會變成一般的骰子,不合題意;
所以就把剩下的通通放在一起,也就是
\(\displaystyle (x+1)(x^2+x+1)(x^2-x+1)^2=(x^7+x^5+x^4+x^3+x^2+1) \)
最後各乘上x得到
\(\displaystyle x^4+2x^3+2x^2+x \)
\(\displaystyle x^8+x^6+x^5+x^4+x^3+x \)
所以一顆為1,2,2,3,3,4
一顆為1,3,4,5,6,8
還有1,2,3,4,5,6

[ 本帖最後由 老王 於 2011-5-30 11:10 PM 編輯 ]
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

填充第 9 題:(有點暴力的解法~一直使用分項對消法~哈!)

因為 \(\displaystyle k^2=(k+2)(k+1)-3(k+1)+1\)

所以,

\(\displaystyle k^2 C^k_3 = k^2\cdot \frac{k(k-1)(k-2)}{3\cdot2\cdot1}\)

   \(\displaystyle =\frac{1}{6}(k+2)(k+1)k(k-1)(k-2)-\frac{1}{2}(k+1)k(k-1)(k-2)+\frac{1}{6}k(k-1)(k-2)\)

   \(\displaystyle =\frac{1}{6}\cdot\frac{1}{6}\Big((k+3)(k+2)(k+1)k(k-1)(k-2)-(k+2)(k+1)k(k-1)(k-2)(k-3)\Big)\)

    \(\displaystyle -\frac{1}{2}\cdot\frac{1}{5}\Big((k+2)(k+1)k(k-1)(k-2)-(k+1)k(k-1)(k-2)(k-3)\Big)\)

    \(\displaystyle +\frac{1}{6}\cdot\frac{1}{4}\Big((k+1)k(k-1)(k-2)-k(k-1)(k-2)(k-3)\Big)\)



所求 \(\displaystyle =\frac{1}{36}\left(21\cdot20\cdot19\cdot18\cdot17\cdot16-5\cdot4\cdot3\cdot2\cdot1\cdot0\right)\)

    \(\displaystyle -\frac{1}{10}\left(20\cdot19\cdot18\cdot17\cdot16-4\cdot3\cdot2\cdot1\cdot0\right)\)

    \(\displaystyle +\frac{1}{24}\left(19\cdot18\cdot17\cdot16-3\cdot2\cdot1\cdot0\right)\)

   \(=903108.\)

TOP

回復 2# 老王 的帖子

應該是(k+2/3)-(k-2/3)=k/2*1/2

TOP

第9題
其實以我的錯誤情況,乾脆直接乘開計算

用瑋岳老師以前PO過的方法
令\(\displaystyle f(x)=\sum_{k=3}^{18} (1+x)^k \)
然後考慮
\(\displaystyle (1+x)((1+x)f'(x))' \)的x^3項係數

可是我算到第四次才出現正確答案~~~真困難!!!
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

回復 3# 老王 的帖子

這不就是考薛骰(Sicherman Dice)嗎?
背起來就不用算了
背不起來我現場也算不出來

這篇科展有相關資料
http://science.ntsec.edu.tw/ezfiles/4/1004/attach/56/94013.pdf

TOP

第九題 暴力另解
K^2C(k,3)=(k+2)(k+1)C(k,3)-3(k+1)C(k,3)+C(k,3)
                 =20C(k+2,5)-12C(k+1,4)+C(k,3)
將上式k=3~18累加後:原式=20C(21,6)-12C(20,5)+C(19,4)=19x3x17x4x233=903108
                                                                                                     (將三項列式後,先提公因數)  
不好意思 不知道怎麼打符號  很凌亂
想請問填充第四,第八

TOP

自己回第四題
將左式展開後:C(n,0)m^0‧n^n+C(n,1)m^1‧n^(n-1)+‧‧‧+C(n,n-1)m^(n-1)‧n=2320
觀察可得左式必為n^2之倍數  又2320=2^4‧5‧29
因此n必為2或4  代回原式可得(m,n)

TOP

請問第六題的解法  

我討論的方法如下  覺得容易錯
首先利用對稱性改討論 x+y+z+u=12的狀況 接著列出所有可能點數的組合
(1119),(1128),(1137),...,(1344),(2226),(2235),(2244),(2334),(3333)
再依條件討論xyzu可能的排列狀況,加總之.

TOP

發新話題