發新話題
打印

所圍三角形個數

推到噗浪
推到臉書

所圍三角形個數

平面上凸n邊行之對角線沒有三線共點者,則由此凸n邊行之邊與對角線所圍出三角形個數
=C(n,3)+4C(n,4)+5C(n,5)+C(n,6)
其中C(n,m)表示從n個相異物中取m個

此等式中第2,3項之係數分別為4,5,線上各位老師是否有人知道呢?!
又此等式又該如何解釋呢?

TOP

已知平面上凸 n 邊形之對角線沒有三線共點者

由此凸 n 邊形之邊與對角線所圍成的三角形可以分成下列幾種情況:



case i: 三角形的三頂點都在原來的 n 個頂點中,

   由此凸 n 邊形的 n 個頂點中,任取三個頂點連接之後,

   即會造成一個這樣的三角形,(可以自己拿筆畫看看比較容易明瞭)

   所以此種情形有 1×C(n, 3)



case ii: 三角形的兩個頂點在原來的 n 個頂點中,一個在凸 n 邊形的內部(也就是經由對角線相交而得),

   由此凸 n 邊形的 n 個頂點中,任取四個頂點連接之後,

   即會造成四個這樣的三角形,(可以自己拿筆畫看看比較容易明瞭)

   所以此種情形有 4×C(n, 4)



case iii: 三角形的一個頂點在原來的 n 個頂點中,兩個在凸 n 邊形的內部(也就是經由對角線相交而得),

   由此凸 n 邊形的 n 個頂點中,任取五個頂點連接之後,

   即會造成五個這樣的三角形,(可以自己拿筆畫看看比較容易明瞭)

   所以此種情形有 5×C(n, 5)



case iv: 三角形的三個頂點都落在凸 n 邊形的內部(也就是經由對角線相交而得),

   由此凸 n 邊形的 n 個頂點中,任取六個頂點連接之後,

   即會造成一個這樣的三角形,(可以自己拿筆畫看看比較容易明瞭)

   所以此種情形有 1×C(n, 6)



所以,由此凸 n 邊形之邊與對角線所圍成的三角形個數

   = 1×C(n,3)+4×C(n,4)+5×C(n,5)+1×C(n,6)

TOP

那為什麼不繼續討論C(n,7)呢?!

TOP

因為所求的三角形的三個頂點只有這四種可能性呀,

而以凸 n 邊形的頂點去取三角形、四邊形、五邊形、六邊形

就是產生這四種情況的最小單位呀。 :-)

TOP

請問第三種情況,怎麼產生5種情況呢?
我只找到三個
這三個是內被兩點與其餘三點所構成
另兩點與這內部兩點構成一直線
謝謝

TOP

case iii 的圖:



TOP

謝謝
我只畫一條線而已,所以.....嗨

TOP

發新話題