發新話題
打印

114新北市國中聯招

114新北市國中聯招

114.5.27新增試題疑義回覆
34.
\(\triangle ABC\)中,\(\overline{AB}=\overline{AC}\),且\(D\)、\(E\)、\(F\)三點分別在\(\overline{BC}\)、\(\overline{CA}\)、\(\overline{AB}\)三邊上,使得\(\overline{DE}// \overline{AB}\),又\(\triangle BDF\)之面積為9,\(\triangle AFE\)之面積為15,\(\triangle DCE\)之面積為32,則\(\triangle DEF\)與\(\triangle ABC\)面積之比值為下列何者?
(A)\(\displaystyle \frac{1}{9}\) (B)\(\displaystyle \frac{1}{5}\) (C)\(\displaystyle \frac{2}{9}\) (D)\(\displaystyle \frac{3}{8}\)
考生疑義:
經計算答案應為3/7,沒有答案可選

命題教授回覆:
經檢視計算過程,答案仍為(C)\(\displaystyle \frac{2}{9}\)

附件

114新北市國中聯招題目.pdf (393.79 KB)

2025-5-25 10:30, 下載次數: 624

114新北市國中聯招答案.pdf (136.18 KB)

2025-5-25 10:30, 下載次數: 528

114新北市國中聯招數學科試題疑義回覆.pdf (298.38 KB)

2025-5-28 00:18, 下載次數: 505

TOP

19.
已知\(f(x)\)為二次函數,且\(f(2023)=2\),\(f(2024)=4\),\(f(2025)=7\),則\(f(2026)=\)?
(A)5 (B)8 (C)11 (D)13
[解答]
\(\matrix{f(2023)&&f(2024)&&f(2025)&&f(2026)\cr2&&4&&7&&11\cr&2&&3&&4&\cr&&1&&1&&}\)

26.
令\(a\)、\(b\)、\(c\)為三個正實數且滿足\(\displaystyle a+\frac{1}{b}=1\),\(\displaystyle b+\frac{1}{c}=2\),\(\displaystyle c+\frac{1}{a}=5\),試問\(\sqrt{abc}\)之值為下列何者?
(A)2 (B)\(\displaystyle \frac{3}{2}\) (C)1 (D)\(\displaystyle \frac{1}{2}\)

若\(x,y,z\)均為正數,且滿足\(\displaystyle x+\frac{1}{y}=5\),\(\displaystyle y+\frac{1}{z}=2\),\(\displaystyle z+\frac{1}{x}=1\),則\(x\cdot y\cdot z\)的乘積為何?
(A)1 (B)2 (C)5 (D)10
(100新北市國中聯招,連結有解答https://math.pro/db/viewthread.php?tid=1135&page=1#pid3539)

28.
如右圖,四邊形\(ABCD\)和四邊形\(CEFG\)為兩個正方形,且\(\overline{FG}=4\),則\(\triangle AEG\)的面積為下列何者?
(A)4 (B)6 (C)8 (D)10
[解答]
設\(ABCD\)邊長為\(x\)
\(\triangle AEG=ABCD+CEFG-\triangle ADE-\triangle EFG-\triangle ABG\)
  \(\displaystyle =x^2+4^2-\frac{x(x-4)}{2}-\frac{4\times 4}{2}-\frac{x(x+4)}{2}\)
  \(=8\)

30.
試問\(cos^2 80^{\circ}+cos^2 160^{\circ}+cos80^{\circ}cos160^{\circ}\)之值為下列何者?
(A)\(\displaystyle \frac{1}{4}\) (B)\(\displaystyle \frac{1}{2}\) (C)\(\displaystyle \frac{3}{4}\) (D)\(\displaystyle \frac{7}{8}\)
類似問題https://math.pro/db/viewthread.php?tid=1318&page=2#pid5056
thepiano解題,http://www.shiner.idv.tw/teachers/viewtopic.php?p=36601#p36601

31.
在坐標平面上,令\(n\)為正整數,如果直線\(\displaystyle y=-\frac{n}{n+1}x+\frac{1}{n+1}\),分別交\(x\)軸與\(y\)軸於\(A_n\)、\(B_n\)二點,且\(O\)為原點。若直角三角形\(A_nOB_n\)的面積為\(S_n\),則\(S_1+S_2+S_3+\ldots+S_{2024}+S_{2025}\)之值為下列何者?
(A)\(\displaystyle \frac{506}{1013}\) (B)\(\displaystyle \frac{2025}{4052}\) (C)\(\displaystyle \frac{2025}{2026}\) (D)1
(我的教甄準備之路 裂項相消,https://math.pro/db/viewthread.php?tid=661&page=2#pid1678)
[提示]
\(\displaystyle A_n=\left(\frac{1}{n},0\right),B_n=\left(0,\frac{1}{n+1}\right)\),\(\displaystyle S_n=\frac{1}{2n(n+1)}\)

32.
試問\(log(tan1^{\circ})+log(tan2^{\circ})+log(tan3^{\circ})+\ldots+log(tan88^{\circ})+log(tan89^{\circ})\)之值為下列何者?
(A)\(-1\) (B)0 (C)\(\displaystyle \frac{1}{2}\) (D)1
我的教甄準備之路 頭尾相加乘為定值,https://math.pro/db/viewthread.php?tid=661&page=3#pid25489

35.
試問滿足方程式\(x^3-y^3=7(x-y)\)和\(x^3+y^3=5(x+y)\)之所有實數數對解\((x,y)\)共有幾組解?
(A)6 (B)7 (C)8 (D)9

TOP

回覆 1# bugmens 的帖子

第 38 題,題目有誤,答案應是 15/19

TOP

發新話題