2.
試求極限\(\displaystyle \lim_{n\to\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\ldots+\frac{1}{n+(n-1)}+\frac{1}{n+n}\right)\)之值為下列何者?
(A)\(ln2\) (B)\(2ln2\) (C)\(\displaystyle \frac{1}{2}\) (D)1 (E)2
6.
試問\(log(tan1^{\circ})+log(tan2^{\circ})+log(tan3^{\circ})+\ldots+log(tan88^{\circ})+log(tan89^{\circ})\)之值為下列何者?
(A)\(-1\) (B)\(\displaystyle -\frac{1}{2}\) (C)0 (D)\(\displaystyle \frac{1}{2}\) (E)1
7.
在\(\triangle ABC\)中,\(\overline{AB}=\overline{AC}=2\),如果\(\overline{BC}\)邊上有100個相異的點\(P_1\)、\(P_2\)、\(\ldots\)、\(P_{100}\),且設\(a_k=\overline{AP_k}^2+\overline{BP_k}\cdot \overline{P_kC}\),其中\(k=1,2,\ldots,100\),則\(a_1+a_2+a_3+\ldots+a_{100}\)之值為下列何者?
(A)100 (B)200 (C)300 (D)400 (E)600
\(\Delta ABC\)中,\(\overline{AB}=\overline{AC}=2\),\(\overline{BC}\)邊上有100個相異點\(P_1,P_2,P_3,\ldots,P_{100}\),若\(m_i=\overline{AP_i}^2+\overline{BP_i}\cdot \overline{CP_i}(i=1,2,\ldots,100)\),則\(m_1+m_2+m_3+\ldots+m_{100}\)之值為何?
(113鳳新高中,連結有解答
https://math.pro/db/viewthread.php?tid=3855&page=1#pid25995)
8.
試問\(cos^2 80^{\circ}+cos^2 160^{\circ}+cos80^{\circ}cos160^{\circ}\)之值為下列何者?
(A)\(\displaystyle \frac{1}{4}\) (B)\(\displaystyle \frac{1}{3}\) (C)\(\displaystyle \frac{3}{8}\) (D)\(\displaystyle \frac{3}{4}\) (E)\(\displaystyle \frac{5}{4}\)
二、多選題
4.
已知\(a,b,c,d\)為正整數,如果\(a^5=b^4,c^3=d^2\),且\(c-a=19\),則下列哪些選項是正確的?
(A)\(c=99\) (B)\(b-a=162\) (C)\(b-c=141\) (D)\(d-a=919\) (E)\(a+b-c=224\)
Assume that \(a,b,c\) and \(d\) are positive integers such that \(a^5=b^4,c^3=d^2\), and \(c-a=19\). Determine \(d-b\).
(1985AIME,連結有解答
https://artofproblemsolving.com/ ... _Problems/Problem_7)
三、填充題
1.
已知正整數\(m,n\)滿足\(n=\sqrt{m-184}+\sqrt{m+24}\),當\(n\)有最大值時,則\(m\)之值為
。