回覆 11# three0124 的帖子
令雙曲線的貫軸長,共厄軸長,兩焦點距離分別為\(2a,2b,2c\)
所以雙曲線正交弦長為 \(\frac{2b^2}{a}\);拋物線正焦弦長為\(4(c-a)=4\sqrt{a^2+b^2}-a\)。
比大小:\(\frac{2b^2}{a}-4(\sqrt{a^2+b^2}-a)=2\frac{2a^2+b^2-2a\sqrt{a^2+b^2}}{a}\)
由算幾不等式知
\(2a\sqrt{a^2+b^2}\leq 2a^2+b^2\) 等號不成立
因此 \(\frac{2b^2}{a}-4(\sqrt{a^2+b^2}-a)=2\frac{2a^2+b^2-2a\sqrt{a^2+b^2}}{a}>0\)
故此選項正確
[ 本帖最後由 PDEMAN 於 2022-7-3 08:18 編輯 ]