發新話題
打印

106高中數學能力競賽

推到噗浪
推到臉書

106高中數學能力競賽

政大附中掃描決賽總報告的題目
https://www.ahs.nccu.edu.tw/ischool/publish_page/3/?cid=2811

TOP

有一個半徑為6的實心球,其球心為\(\displaystyle (0,0,\frac{21}{2})\);另有一個半徑為\(\displaystyle \frac{9}{2}\)的實心球,其球心為\((0,0,1)\)。則兩球相交的區域內部共有   個格子點(坐標皆為整數的點)。

在密碼學中,我們將26個英文字母按順序分別對應整數0~25,例如:\(A,B,C\)對應0,1,2,\(Z\)對應25。現有4個英文字母構成的密碼單詞,這個單詞字母由左而右分別對應整數\(x_1,x_2,x_3,x_4\)。已知:\(x_1+2x_2,3x_2,x_3+2x_4,7x_4\)除以26的餘數分別為\(9,16,23,2\)。則此密碼的單詞是   
(97師大附中,https://math.pro/db/thread-743-1-1.html)

有一個直圓柱量筒,平放在桌面上,其底面直徑為4公分,現將3個直徑為2公分的鐵球放進量筒中,再將水注入量筒中,直到3個鐵球全部沒入水中,則量筒中水位高至少為   公分。

在空間座標中有一光源位於\((0,2,2)\),將\(xz\)平面上的圓:\(x^2+(z-1)^2=1\),\(y=0\)照射在\(xy\)平面上,試問這個圓的所有的影像構成何種曲線?其方程式為何?
https://math.pro/db/thread-674-1-1.html

正方形\(ABCD\)內一點\(P\)滿足\(\overline{PA}=\sqrt{3},\overline{PB}=2\sqrt{3},\overline{PD}=\sqrt{6}\),求正方形\(ABCD\)的面積。
(99萬芳高中,https://math.pro/db/viewthread.php?tid=969&page=1#pid2220)

若\(\alpha=sin^3 20^{\circ}-sin20^{\circ},\beta=sin^3 40^{\circ}-sin40^{\circ},\gamma=sin^3 80^{\circ}-sin80^{\circ}\),試求\(\alpha+\beta-\gamma\)之值。

試證:\(\displaystyle \frac{1}{cos0^{\circ}cos1^{\circ}}+\frac{1}{cos1^{\circ}cos2^{\circ}}+\frac{1}{cos2^{\circ}cos3^{\circ}}+\ldots+\frac{1}{cos88^{\circ}cos89^{\circ}}=\frac{cos1^{\circ}}{sin^2 1^{\circ}}\)

TOP

此密碼的單詞是HOPE

這有公式的。
正方形ABCD內有一點P,P到頂點A,B,C,D的距離分別是a,b,c,d,正方形面積為X,則
①a²+c²=b²+d²
② 2X²-2(b²+d²)X+(a²-b²)²+(a²-d²)²=0
此題正方形的面積為9+5√3

TOP

發新話題